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1. Introduction

Diagnostics of analog systems is currently a wide domain with 
numerous applications, closely related to the types of analy-
zed objects. With the increasing number of such systems (inc-
luding mechanical and electronic elements), the set of usable 
approaches also increases. Contrary to the digital object, its 
analog counterpart is characterized by the continuous trans-
mission and processing of information. Therefore the system 
may also be in the infinite number of states, generating con-
tinuous signals. This makes the diagnostics of analog systems 
especially difficult. The most popular approaches used in the 
domain belong to Artificial Intelligence (AI). Their advantages 
include the autonomous operation (without the input of the 
human operator), high accuracy with generalization abilities 
and (in most cases) the ability to update knowledge through 
the additional learning procedure. Disadvantages include the 
dependency of the acquired diagnostic knowledge on the ava-
ilable data (use cases) presented during the training of the 
diagnostic module. Sometimes explanation of the reasoning 
process (i.e. how the premises were used to draw conclusions) 
is required. The most popular diagnostic methods, exploited 
in practice, are Artificial Neural Networks (ANN) [1, 2]. This 
paper presents the taxonomy, structural and operational deta-
ils of ANN used for the diagnostic purposes. The structure of 
the paper is as follows. Section 2 presents diagnostic principles 
important from the AI-application point of view. In Section 3 

the generic diagnostic architecture is introduced with the focus 
on internal modules. Section 4 covers the ANN work regime 
from the diagnostic point of view. In Section 5 the main archi-
tectures of ANN with their applications are presented. Section 
6 presents diagnostics of the 5th order lowpass filter using the 
RBF ANN-based classifier. In Section 7 summary and future 
prospects of the discussed ANN are provided.

2. Aims of the diagnostics

Diagnostics is aimed at determining the actual state of the 
analyzed System Under Test – SUT, based on the observations 
of the measured signals y(t) being responses to the known 
excitation x(t). Similarly to the medical and veterinary dia-
gnostics, in technical sciences non-invasive approaches are pre-
ferred, where the information about the system’s behavior is 
available only through the input and output (accessible and 
partially accessible) nodes (with the maximum set of nodes 
being hidden, i.e. inaccessible). Therefore the diagnostic sys-
tem is expected to establish relations (in the form of the unk-
nown function f()) between the observable features of output 
signals and configuration of parameters p defining the SUT’s 
work regime [1]. The latter can be based on the human expert’s  
experience or the mathematical description of the system. 
Alternatively, simulations of the SUT model may provide the 
information about how it works and how changes in parameters 
influence behavior of the whole object. Such heuristic models 
are currently an important source of knowledge about the ope-
rating system, used to create data sets for AI-based classifiers.

 y(t) = f[x(t), p, t] (1)

As analog systems are widely exploited and belong to the 
multiple technical domains, it is difficult to propose one uni-
versal diagnostic solution for all of them. Criteria determining 
usage of specific approaches include, among others, the ability to 
apply excitation signals to the SUT input (impossible in closed 
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Abstract: The paper presents the diagnostic applications of artificial neural networks (ANN). 
Aims and problems present in the contemporary diagnostics are introduced. The structure of the 
artificial intelligence-based system is presented and discussed in detail. Various approaches to 
design the on-line fault detection and location system using artificial intelligence approaches are 
introduced. The generic architecture of the ANN and its variations are presented. Next, their diagnostic 
applications, advantages and drawbacks are discussed. Application of RBF ANN-based diagnostic 
module to detect and identify faults of the 5th order lowpass filter is presented. Finally, usability and 
limitations of the ANN-based diagnostic system are provided.   
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loop systems, such as DC motor or industrial installation), char-
acter of measured responses (occupation of the frequency band 
or physical nature – acoustic, electrical, etc. – of the generated 
signal), or work regime, allowing (or not) for dismantling the sys-
tem for repairs. In Figure 1 the example of the electronic lowpass 
5th order filter is presented. It contains 9 nodes, which, depend-
ing on the designer’s choice may be made accessible or not. The 
excitation is put to the node No. 1, while from the output node 
(No. 9) responses are measured. Ten elements (resistances and 
capacitances) determine the frequency characteristics (Fig. 2), 
therefore their values should be identified during the diagnostic 
procedure. Nominal values for the 10 kHz cutoff frequency of all 
elements, are as follows: R1 = R2 = R3 = R4 = R5 = 1 k�, C1 = 
16 nF, C2 = 19 nF, C3 = 13 nF, C4 = 51 nF and C5 = 49 nF.

 − fault location is the process of determining, which parameter 
is beyond the tolerance margins and therefore the source of 
the fault. The aim is to determine the discrete number – the 
identifier of the parameter responsible for the incorrect beha-
vior of the SUT. In the process diagnostics the term “fault 
isolation” is used. It is important during monitoring of large 
installations or machines that must operate constantly and 
can be turned off for repairs only for a short amount of time. 
 − fault identification is aimed at determining, what is the devia-
tion of the faulty parameter from the designed value. This is 
the most detailed information especially useful in the diagno-
stics of systems, which cannot be easily opened and disassem-
bled. It allows for compensating the parameter responsible 
for the fault with the additional signal (which is done in the 
feedback loops).
 − fault prediction – based on the current measurement infor-
mation obtained from the SUT, it is sometimes required to 
determine, how will the SUT behave in the nearest future. 
This aim requires determining trends and considering time 
and dynamics of changes. It is then used in large installations, 
such as power plants, but can also be applied to predict the 
life cycle of complex systems and devices.Fig. 1. Scheme of the 5-th order lowpass filter

Rys. 1. Schemat filtru dolnoprzepustowego 5. rzędu

According to (1), it is assumed that responses measured at 
accessible nodes are enough to determine the SUT state, which 
is not always true, as will be discussed later. From response 
signals characteristic features, which bear information about 
faults (further called symptoms) are extracted (see Fig. 3). Their 
form depends on the analyzed domain. For instance, in the time 
domain these can be positions of extreme values of the signal 
and the time instances of zero crossings. In the frequency domain  
spectral components at specific frequencies are used.

Depending on the expected diagnostic accuracy and appli-
cation of the diagnostic process, the following detailed aims 
are exploited:

Fig. 2. Frequency characteristics of the 5-th order lowpass filter from 
Fig. 1
Rys. 2. Charakterystyka częstotliwościowa filtru dolnoprzepustowego 5. 
rzędu z Rys. 1

 − fault detection, i.e. determining if the analyzed SUT is wor-
king correctly or not. This is the main aim in all production 
processes, where the newly created object must be checked if 
it meets the design requirements and can be sold. If the SUT 
is considered faulty, it is disposed of. In the case of on-line 
diagnostics of constantly working objects (such as motors, 
servomechanisms) or continuous processes, fault detection is 
the first step to the more detailed analysis. 

Fig. 3. Extraction of symptoms from the response of the electronic 
filter from Fig. 1
Rys. 3. Ilustracja pozyskiwania symptomów z odpowiedzi filtru 
elektronicznego z Rys. 1

All these aims refer to the nominal (compliant to the design 
specifications) and actual states of the SUT. In the system 
operating correctly both should be considered the same state. 
Determining whether the SUT is in the nominal state or distin-
guishing between various faulty states is usually difficult because 
of two factors:

 − existence of the noise related to the operation of the SUT and 
the surrounding environment. The noise influences the measu-
rement accuracy, degrading the fault detection and identifica-
tion. In most cases, the noise is eliminated from the measured 
signals by de-noising.
 − tolerances in the values of SUT parameters. They influence 
behavior of the system leading to changes in the symptoms’ 
values, which may be misleading for the diagnostic system. 
Tolerances are the problem in the real systems (contrary to 
the computer models), as all constituent elements of the SUT 
are produced with the finite accuracy. Therefore each produ-
ced device or system is slightly different. It may be considered 
faulty if responses are beyond the predefined margins. 
Both phenomena impose application of the diagnostic module 

operating in the uncertainty conditions (see Section 3). Reaching 
diagnostic aims is also impeded by Ambiguity Groups (AG), 
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which are subsets of SUT parameters hardly distinguishable 
from each other [2]. Elimination of AG is done by increasing the 
number of accessible nodes or introducing additional symptoms, 
which allow for separating various faults. 

The types of diagnosed faults are distinguished into parame-
tric and catastrophic ones. The former refer to changes in the 
SUT parameters that do not modify its topology. Such faults are 
related with deviations slowly progressing in the SUT because 
of changing environmental conditions and wearing out its con-
stituent elements. They can be used for determining the actual 
state of the system after the specified time of operation (to 
verify if it still meets the designer’s assumptions). Such faults 
are more difficult to detect and identify especially because it is 
not easy to determine when the SUT goes out of the nominal 
state (while the process of changes is continuous). Identifica-
tion and localization of parametric faults assumes the changes 
in the parameter are measurable based on output signals and 
their values proportional to the values of symptoms. Sometimes 
it does not hold, when the SUT’s behavior has low sensitivity 
to the particular parameter. On the other hand, catastrophic 
faults (such as the short circuit in the electronic filter) change 
structure of the SUT, therefore abruptly influence its behavior. 
Such faults are easier to detect and identify.

Most diagnostic approaches (not only AI-based) exploit the 
SUT model simulation to confront it against the actual system. 
Two methods are used here: Simulation Before Test (SBT) and 
Simulation After Test (SAT) [3]. The first one relies on the 
extensive exploitation of the model to find dependencies between 
its internal structure and observable behavior. This is the widely 
used methodology for all data-driven methods, including the 
ones using AI. The SAT paradigm uses the SUT model in par-
allel with the actual system measurement. The residual infor-
mation is the difference between the simulated and measured 
symptoms. This scheme is more challenging, as it introduces 
time limitations for making the decision. The on-line simulation 
is used in the monitoring systems of large and complex objects, 
such as nuclear power plants [4, 5]. In this case, ANN are attrac-
tive, as they are fast and provide the acceptable accuracy. The 
ANN presented in this paper are in most cases (with exceptions 
presented in Section 4) used in the SBT methodology.

3. Diagnostic architecture

The general scheme of the diagnostic system is presented in 
Fig. 4, usually implemented as the combination of software 
and hardware modules. We assumed here the ability to select 
excitation signals, adjusted to the specific SUT, which is not 
always possible (for instance, in electrical machines, or indu-
strial installations). The most important part is the diagnostic 
algorithm, although its efficiency depends on the set of symp-
toms used for distinguishing between faults. The symptoms 
belong to one of the following domains: time (like the duration 
of the impulse), frequency (values of harmonic components) or 
mixed (like wavelet coefficients). Based on the set of symptoms 
s = {s1, …, sm} and knowledge about dependencies between 
them and values of parameters p = {p1, …, pk}, the diagno-
stic decision can be made. The source of knowledge may be 
human- or machine learning – originated. In both cases, the 
automated diagnostic system is treated as the expert system 
(Fig. 5), able to perform deductive process on the vector of 
actual data extracted from the monitored SUT. The automa-
ted knowledge extraction from the learning data set allows 
for creating the knowledge base. It is then used to make deci-
sion about the state of the SUT based on the vector of actual 
symptoms sa. The additional explanation mechanism may be 
present to describe the deductive process to the human ope-
rator. It is used to check if the diagnostic system operates 
correctly. If needed, changes can be made to the reasoning 

mechanism. Implementation of the diagnostic system depends 
on the exploited AI algorithm. Despite multiple differences 
between the particular approaches, their advantages include 
the adaptation to the available data, autonomous operation 
and, in most cases, ability to extract knowledge from the tra-
ining data sets. In each category there is usually at least one 
method tackling data measured in the uncertainty conditions.

SUT
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Fig. 4. Generic diagnostic architecture
Rys. 4. Ogólna architektura diagnostyczna
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Fig. 5. Architecture of the AI-based diagnostic system
Rys. 5. Architektura systemu diagnostycznego wykorzystującego sztuczną 
inteligencję

The diagnostic procedure is implemented in off-line or 
on-line conditions. In the former, the SUT may be disconnected 
from the operating environment and then thoroughly tested. 
Regarding the moment of collecting knowledge by the diagnos-
tic module, this operation uses the SBT scheme. In the on-line 
case (when the diagnosed system must be monitored during its 
normal operation), the SAT approach is applied. 

AI is widely used in the diagnostics. Among multiple 
approaches the most popular are presented in Fig. 6. This tax-
onomy distinguishes the form of knowledge used during the 
reasoning process. The rule-based approaches exploit IF THEN 
structures, combining premises (i.e. conditions that must be 
met if the rule is to be activated or fired) with conclusions (in 
this case the diagnostic decision). This gives the legible form of 
the diagnostic process, which is true for Decision Trees (DT) 
or Rules Inference (RI) modules. Fuzzy Logic (FL) [6] is the 
most sophisticated method, operating in the uncertainty condi-
tions, but is devoid of the machine learning algorithm. There-
fore knowledge must be provided to the system by human or 
the additional method. Rough Sets (RS) operate on the sim-
ilar principle as FL, but require the preceding discretization 
of symptoms’ continuous values. Numerical approaches mainly 
cover the Artificial Neural Networks (ANN) and their versions 
(as will be presented in Sections 4 and 5). Statistical approaches 
are based on the Bayes theorem and allow for making decision 
based on the established a priori knowledge and observed a pos-
teriori data. The simplest algorithm is the Naïve Bayes Clas-
sifier (NBC), although Bayesian Networks (BN), used mainly 
in the analysis of industrial systems [7] and Hidden Markov 
Models (HMM) [8] are applied as well. Finally, distance-based 
approaches make decision about the fault of the SUT by calcu-
lating the distance between the symptoms’ vectors forming the 
dictionary (data set L containing n labeled vectors of m symp-
toms – see (2)) and the actual set of measured symptoms sa.  
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The most popular method here is the k Nearest Neighbor (kNN) 
classifier. Among all these methods ANN are the most popular 
because of their easy implementation (multiple software librar-
ies exist for virtually all programming languages). They will be 
presented in detail.

 
   
  (2)

4. Characteristics of ANN

All ANN are structures containing neurons (or computational 
units) strongly interconnected with each other. They are able 
to perform complex computations using simple mathematical 
operations, such as multiplication and addition. Each neuron 
is represented by the activation function, producing the output 
value o depending on l input values qi [9].

  (3)

Activation functions are usually continuous (with exception of 
Heavyside and signum functions). The simplest one is the linear 
function, where the output o is just the result of multiplying the 
matrix W and the input vector q (4). The sigmoidal functions 
produce continuous values, respectively, between 0 and 1, and 
–1 and 1. Another popular version is the Gaussian function, 
used in RBF networks.

  

 

 

(4)

Knowledge obtained during the ANN training has the form 
of the weights’ matrices W (4), representing connections between 
particular neurons. Values of weights are optimized during the 
training to adjust the ANN structure to the solved problem. 
According to (4), the ANN signal processing consists in the 
matrix multiplication, which makes such a system computation-
ally efficient fast and feasible to the on-line diagnostics. 

Because of the ability to learn and fast on-line operation, 
ANN are widely used in two main problems, which are also 
present in the diagnostics:

 − Classification – the aim here is to determine (based on the 
values of selected symptoms) the discrete state of the SUT 
(represented by the category being usually the integer num-
ber). The binary classification (“0” or “1” category) is perfor-
med only to detect the fault, without the detailed analysis of 
its source. In the case of catastrophic faults, the multi-class 
categorization can be performed to determine the faulty ele-
ment. In the case of parametric faults, the classification requ-
ires determining at least the identifier of the faulty element 
(for the location) and (in the case of the fault identification) 
its deviation degree from the nominal value. This is more com-
plicated, requiring division of the continuous range of each 
parameter’s changes into a number of intervals. In the most 
general configuration, each parameter or element is represen-
ted by two codes, determining its value being greater or lesser 
than the nominal one. To increase the diagnostic resolution, 
more discrete values to identify may be introduced, such as 
“much lesser than”, “lesser than”, “greater than” or “much 
greater than” the nominal value. This way fault codes, usable 
during the machine learning, can be prepared. For the purpose 
of AI methods, these values are used to create categories in 
the data sets (the last column in L (2)).
 − Regression – the aim is to determine the actual values of the 
SUT parameters based on the values of symptoms. The ope-
ration consists in mapping the vector of features into one or 
more real-valued parameters. 
The additional issue regarding the classification task in dia-

gnostics is that multiple parameters may be the source of the 
fault. This requires application of specific algorithms able to 
point out multiple fault codes simultaneously. To achieve that 
in the ANN-based diagnostic system, the specific coding scheme 
must be used (see below). Majority of ANN are one-directional 
networks, where vector of symptoms enters the ANN-based 
diagnostic system (see Fig. 7). Its neurons are usually orga-
nized into layers, between which signals are transmitted, starting 
from inputs (where no actual calculation is performed), through 
a number of hidden layers, concluding with the output layer. 
This way the ANN can be seen as the “black box”, because the 
direct relation between the set of symptoms provided to the 
input of the network and the diagnostic information, produced 
by the output layer is not known. 

Most ANN configurations presented in Fig. 6 are used to 
perform classification and regression, although prediction is also 
tried. The number of neurons in hidden layers is the parame-
ter of the network, optimized depending on the data provided 
during the training. Although there are algorithms of adjusting 
the number of layers and their neurons in the process, the typical  

Rule-based Numerical Distance-based

NBC

BN

HMM

DT kNN 

RI 

FL 

ANN

RS 

Fig. 6. Taxonomy of AI methods for the diagnostics of analog systems
Rys. 6. Klasyfikacja metod sztucznej inteligencji w diagnostyce systemów analogowych
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approach for the design of the optimal diagnostic system is 
to perform training on the same data set multiple times, for 
different number of neurons and layers. The type of applied 
hidden neurons (sigmoidal, Gaussian, etc.) depends on the par-
ticular architecture. The number of neurons in the output layer 
is adjusted to the solved task. In the regression, the number 
of neurons is the number of predicted parameters. The linear 
activation function is used here. In the classification task (fault 
detection, location and identification) the situation is more com-
plex. The sole fault detection is the binary classification problem, 
therefore the single sigmoidal neuron is enough to do the job. 
In the multi-class problem (fault identification and location), 
there is the need to use multiple binary-valued neurons, which 
values form binary combinations attributed to the particular 
fault code. Various coding schemes are used, among which the 
most popular are One versus All (where each neuron represents 
the separate category) and Minimum Output Coding (where 
the combination of outputs forms the identifier). The former is 
simple and potentially allows for detecting multiple faults. The 
latter uses the minimum number of neurons. To minimize the 
probability of classification error, at the expense of additional 
neurons, the Error Correcting Output Coding may be used [1].

Another aspect of the ANN application in diagnostics is the 
training mode (see Fig. 8). Most structures are applied in the 
supervised learning, where the data analyzed to extract knowl-
edge is labeled, i.e. the relation between the set of symptoms and 
the specific SUT state is known and written into the set, of the 
form like (2). In some cases such an information is not known 
and the aim of learning is to determine the relations within data. 

Fig. 7. Structure of the ANN-based diagnostic module
Rys. 7. Struktura modułu diagnostycznego wykorzystującego sztuczne sieci neuronowe

inputs outputs
output layerhidden layers

…

Bias

s1

sm

d1

dk

SUT sa

Supervised learning Unsupervised learning

SOMRBF
MLP
SVM

FNN
HNN
RNN

Fig. 8. Taxonomy of the ANN used in diagnostics
Rys. 8. Klasyfikacja sztucznych sieci neuronowych wykorzystywanych 
w diagnostyce

The most popular is supervised learning, where each example 
in the training set is labeled, i.e. the category of each vector of 
symptoms is known. In the diagnostics of industrial processes 
the relation between symptoms and the fault is rarely known, 
which makes this type of learning not applicable.

In the unsupervised learning no labels of examples are given, 
so the task for the network is to find dependencies in data (in 
the form of clusters of similar vectors of symptoms). The base 
for the process is the set L (2) without the last column. This 
way fault categories may be created during the training and next 
used to determine the state of the actual SUT. 

5. Diagnostic applications of ANN

This section introduces the particular ANN configurations and 
their diagnostic applications. Each network type is presented, 
its advantages and drawbacks discussed in detail. All abbre-
viations refer to the taxonomy of Fig. 8.

 − Multilayered Perceptrons (MLP) – these are the oldest and 
the best established networks, used to solve various problems 
in biological, environmental and technical domains. These 
are the most general architectures, with potentially multiple 
hidden layers. The widely used efficient training method of 
MLP includes the Levenberg-Marquardt algorithm. The MLP 
were mainly used in fault detection and fault location tasks 
[10]. They were also implemented in hardware, such as digi-
tal signal processor or FPGA [11]. Their typical diagnostic 
applications include the fault detection in industrial proces-
ses, where the failures of particular elements of the system 
(such as the actuator or the sensors) are monitored [12]. Other 
applications include classification of faults in the automotive 
engine [13] based on the vibration signals. Obtained results 
show the MLP is comparable to the Kalman Filter, often used 
as the SAT approach in the on-line diagnostics. In [14] the 
MLP was used to detect catastrophic faults in the measure-
ment instruments being the part of the more complex system. 
The number of hidden layers in the applied networks is no 
greater than two.
 − Radial Basis Function (RBF) networks – are mainly used in 
the parameter identification (i.e. regression task) [15], altho-
ugh the classification was tried as well [16]. The RBF archi-
tecture contains the single layer with Gaussian activation 
function and the linear functions in the output layer. RBFs 
are considered as equally accurate to MLP with the simpler 
training algorithms. On the other hand, training requires lar-
ger data sets, which can be suppressed, using, for instance, 
correlation method [17]. 
 − Support Vector Machines (SVM) – because analysis of actual 
SUTs considers uncertainty conditions, methods able to tac-
kle this problem were introduced. The most popular is the 
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advanced type of ANN, which, through the quadratic pro-
gramming, positions the hyperplane separating vectors of 
symptoms belonging to different categories so that the error 
is minimal, SVM are widely used for both fault identification 
and regression tasks. The structure of the single SVM, proces-
sing m symptoms and producing one output value is presented 
in Fig. 9. The key operation is the transformation from the 
original space of features into the optimal one, where various 
SUT states are easier distinguishable. This is done using the 
parameterized kernel function K (equivalent of the activation 
function in the traditional networks). The most popular ker-
nels are linear, polynomial and RBF, although many other 
can be used [18]. In the case of classification, coding schemes 
are the same as for other networks. The SVM provide opti-
mal classification and regression results when environmental 
noise or tolerances of elements are employed. Their disadvan-
tages include a long and complex optimization process, invo-
lving selection of the most suitable kernel and its parameters. 
Applications of SVM are wide, starting from the analysis of 
analog circuits [19], through the electrical machines [20], up 
to industrial installations [21]. During the SVM-based diagno-
stic system the most important problem is selection of the 
best values of kernel parameters. Among many approaches 
tried there are genetic algorithm or simulated annealing [22].
 −Fuzzy Neural Networks (FNN) – this is another structure, 
allowing for operation in the uncertainty conditions. This 
network is a combination of FL inference system with the 
training algorithm typical for the ANN. This way five lay-
ers are created, each responsible for a single operation in the 
FL module. The structure of the typical FNN is in Fig. 10.  

The network operates by activating fuzzy rules, which are used 
to produce output values. Applications of FNN are similar to 
SVM, where the diagnosed objects are automotive or electrical 
motors [23], as well as industrial installations [24].
 − Self-Organizing Maps (SOM) – this is the most popular unsu-
pervised learning network, which is trained to create categories 
(forming groups of similar vectors of symptoms) representing 
SUT states. The network is one-layered (see Fig.  11), where 
all neurons are positioned on the plane. During the machine 
learning, the neurons with weights the most similar to the cur-
rently presented vector of symptoms (in the sense of selected 
distance, such as Euclidean) are trained to react even stronger 
to these vectors. In the end of training, the neurons reacting 
to any sets of symptoms are treated as the centers of clusters 
and represent categories. SOM can be used for the fault identi-
fication, but also detect ambiguity groups [25]. Recently, such 
networks were used in the hierarchical diagnostics system as 
the introductory classifier [26].
 − Recurrent Neural Networks (RNN) – these networks are used 
in the model-based diagnostics. In their structure the feedback 
loops are present. Templates representing various SUT states 
are first inserted into the weight matrix and in the process of 
switching states the network ends up in the steady state. This 
way the final diagnostic decision is made. Such networks are 
used as the SAT approaches to diagnose industrial processes 
(elements of sugar factory [27]). Other architectures include 
the application of structures similar to MLP, but with the 
feedback loops inserted. Such networks are used to solve simi-
lar problems as more traditional approaches, like the analysis 
of induction motor [28] or power electronics elements [29].
 − Hierarchical Neural Network (HMM) – this is the more com-
plex structure [30] exploiting ANN architectures presented 
above. Usually multiple networks are used here, trained on 
various data sets and for different purposes. For instance, one 
top-level network is trained to detect faults, while networks 
at the lower level are responsible for isolating specific faults. 
In such architectures the ANN is often combined with other 
approaches, responsible for the detailed fault identification. 
For example, logical inference mechanism was used in the 
second stage of the power transmission system diagnostic 
module [31]. Such approaches allow for identifying multiple 
faults in large scale systems. 

…

s d=sgn(g(s))
K(s1,sj)

+K(s2,sj)

K(sm,sj)

w1

wm

Fig. 9. Structure of the binary SVM classifier
Rys. 9. Struktura binarnego klasyfikatora SVM

Fig. 10. Hybrid structure of the FNN
Rys. 10. Struktura hybrydowa rozmytej sieci neuronowej
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on actual elements, each parameter was changed randomly (with 
the normal distribution) to have deviations within 10 percent of 
the original value. The range of parameter changes was 80% of 
the nominal values, leading to examples representing the SUT 
behavior for values smaller and larger than the nominal one. 
The SUT was analyzed in the time domain, therefore from each 
output sinusoid, the first three extreme values and zero crossings 
with their time instants were acquired (as in Fig. 4). This way at 
each node nine features are collected. Depending on the number 
of accessible nodes, the cardinality of the set of symptoms varied 
from 9 (only the output node) to 54 (nodes 2, 4, 5, 7, 8, 9 made 
accessible). All examples were supplemented with fault codes, 
i.e. discrete values representing the source of the fault and its 
intensity. The code [1] consists of the number of the faulty ele-
ment (subsequent resistances were assigned numbers from 1 to 5, 
while capacitances – from 6 to 10). The deviation from the nomi-
nal value is represented by one of four integers: –2, –1, 1 and 2, 
standing for “much smaller than”, “smaller than”, “larger than” 
and “much larger than” the nominal state. This way the code 
–21 means that the second resistor has the value smaller than the 
nominal value, while 72 is for the second capacitor with the value 
much larger than the nominal one. The fault-free state (when 
all SUT parameters are within tolerance margins, i.e. different 
than nominal values at no more than 10%) is represented by the 
code 0. The thresholds separating subsequent deviation levels of 
the parameter pi were set at 50% and 10% of the nominal value 
pni, as in Fig. 12. This gives 41 fault codes to distinguish for the 
ANN-based classifier. Each SUT element was deviated the same 
number of times, which led to the sets with size of 70 and 180 
examples, depending on the number of simulations (7 or 18 for 
each parameter). Examples for the testing set were acquired the 
same way, but for different values of parameters. This allows for 
testing the generalization capabilities of the diagnostic system. 
Two sizes of data sets were prepared. In the first case, 7 exam-
ples were acquired for each parameter, leading to set size of 70 
examples. In the latter case, 18 parameter values were simulated, 
leading to 180 examples in the set. In the presented experiments 
both sets will be referred to as L1 and L2 (while the testing sets 
are labeled as T1 and T2, respectively).

The diagnostic accuracy in the presented case is defined as the 
relative number of correctly classified examples from the set T:

 
  (5)

The presented experiments were aimed at establishing the 
following goals (especially important for the architecture of the 
RBF network):

 − Determining the influence of the training set size on the fault 
identification accuracy.
 − Comparing various output layer coding schemes on the iden-
tification accuracy.
 −Selecting the optimal set of accessible nodes ensuring the 
acceptable diagnostic accuracy.
Three coding schemes in the output layer were used for experi-

ments: One versus All, Minimum Output Coding and One versus 
One, determining the number of neurons in the output layer o. 

The important issue is the correct selection of symptoms 
extracted from measured signals. Their set depends on the par-
ticular SUT and domain of analysis (for instance, in the aco-
ustic analysis, cepstral components of the recorded sound are 
often used). If collected values are not enough to make all faults 
distinguishable, the additional method can be introduced to pre-
process the data, such as transforming it into the new feature 
space, where the task would be easier. Although SVM have this 
feature inherent, in other architectures, such as MLP or RBF 
the external method is added, like Principal Component Ana-
lysis (PCA) or Independent Component Analysis (ICA) [32].

To maximize the accuracy of the diagnostic system, the opti-
mization procedure is often employed. Its task may be to adjust 
the neurons and weights between them to the training data as 
the alternative to the traditional learning algorithms [16]. Also, 
the discrete optimization method can be used to adjust the ANN 
structure (number of neurons in hidden layers), while the con-
tinuous optimization is used to set parameters of the activation 
functions or kernels, which is done before each training process. 

6. Experimental example

This section presents the numerical example of the diagnostic 
system presented in Fig. 7, based on the supervised learning 
RBF network (i.e. containing the single hidden layer with 
Gaussian activation function neurons). Contrary to its usual 
application (i.e. the regression), here this network was used for 
the classification. This is the part of work presented in [17]. 
The model of the lowpass filter from Fig. 1 was simulated in 
the Simulink environment, allowing for producing examples for 
sets L and T. The diagnostic procedure is performed in the off-
-line mode (after isolating the SUT from the operating environ-
ment). Simulations consisted in putting the excitation sinusoid 
(1 V amplitude and 9 kHz frequency) to the node No. 1 and 
recording responses on the output node (No. 9), and all other 
made accessible during the circuit design. Note that during 
the model simulation there is the full freedom of selecting the 
set of available nodes. In the real world the consequences of 
this operation are additional pins in the casing of the integra-
ted circuit, making the design more complex and expensive.

To create the single example (set of symptoms) from the 
simulation, the selected SUT parameter was first changed to 
represent the single parametric fault. Values of other parameters 
maintained nominal. To incorporate the influence of tolerances 

Fig. 11. Structure of the Self-Organizing Map
Rys. 11. Struktura mapy samoorganizującej się
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Fig. 12. Assignment of the fault code regarding the deviation of the parameter from the nominal value
Rys. 12. Przydział kodu uszkodzenia na podstawie odchylenia wartości parametru od nominalnej
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In the first case 41 categories had to be distinguished (one neu-
ron for each fault category), the second one required 6 neurons 
(as they are able to encode up to 64 categories), while the OvO 
scheme required to train 820 networks, each with the single 
output responsible for distinguishing between two categories. 
Parameters of networks during their training included the opti-
mal number of hidden neurons k, width of the Gaussian function 
s and target error e during the training. The RBF network was 
implemented using the MATLAB Neural Networks toolbox. 

Table 1 presents the accuracy of the diagnostic module for the 
larger set T2 (with 180 examples) using three coding schemes. 
The experiments were conducted on six available nodes, i.e. 2, 
4, 5, 7, 8 and 9. The OvO coding is the most effective, despite 
its most complex structure, requiring multiple (though relatively 
simple) networks. On the other hand, their hidden layers contain 
the smallest number of neurons (the average is 8). The latter was 
determined by repeating the training procedure for the incre-
asing number of neurons. After initial increase of the diagnostic 
accuracy, the further addition of neurons does not improve the 
network performance. Therefore the minimum number ensuring 
the maximum accuracy should be selected. This method requires 
repeating the training-testing scheme many times and therefore 
is time-consuming. Alternative approaches consist in optimizing 
the number of neurons using sensitivity approaches [33]. The 
training error e in all cases should be close to zero, ensuring the 
proper adjustment to available data. 

Table 1. Diagnostic accuracy for various RBF network coding 
schemes
Tabela 1. Dokładność diagnostyki dla różnych schematów kodowania 
w sieci typu RBF

Coding scheme s k o e acc [%]

OvA 0.5 82 41 0.0 81.11

OvO 0.6 8 820 0.0 83.33

MOC 0.3 95 6 0.02 80.56

In Figure 13 dependency between the diagnostic accuracy 
and the size of the training set is presented. As RBF networks 
are susceptible to the amount of training data, it is impor-
tant to determine, what is the minimal amount of information 
required to extract significant diagnostic knowledge. Results in 
Table 2 show accuracy of the optimal networks, trained on the 
available sets. The set L1 clearly contains not enough data that 
would allow for the proper generalization. Only larger sets can 
be used to obtain the acceptable accuracy. Note that it is unk-
nown, which examples ensure the proper accuracy, therefore the 
size of the set is of the secondary importance. To determine this 
parameter, the additional analysis of examples must be perfor-
med (for example, exploiting the informativeness criterion [34]). 

Table 2 presents the analysis of the diagnostic accuracy 
depending on the set of accessible nodes for the OvA coding. 
Initially, only responses at the node No. 9 are recorded (which 
is the typical for the real system). It is only sufficient to detect 
the fault but not enough to determine changes in all parame-
ters. To achieve this goal, more nodes have to be added to the 
analysis. Because they are located in the filter one after another, 
experiments consisted in adding data from them in the specified 
order. The greatest increase in the information about faults is 
expected to be obtained after adding nodes in the middle and 
closer to the output. Therefore the following sequence was pro-
posed: 9, 5, 8, 7, 4. For the comparison purposes, results for the 
analysis of selected single internal nodes were added to illustrate 
the amount of information obtained from subsequent parts of the 
circuit. Optimal values of the RBF width s and the number of 

neurons in the hidden layer k are given as well. Addition of nodes 
closer to the output of the circuit increases the accuracy until 
no significant improvement can be obtained. This leads to the 
set of nodes important from the diagnostic point of view, while 
all others don’t have to be accessible. Note that similar anal-
ysis must be performed for every circuit separately. For larger 
circuits, automated node selection methods are proposed [35].

Table 2. Diagnostic accuracy of the RBF ANN-based classifier (OvA 
coding) depending on the set of accessible nodes
Tabela 2. Dokładność diagnostyki klasyfikatora wykorzystującego sieć RBF 
(schemat kodowania OvA), w zależności od zbioru węzłów dostępnych

Analyzed nodes s k acc [%]

5 0.3 68 39.55

8 0.1 136 51.22

9 0.1 161 38.99

9,5 0.3 78 60.66

9, 5, 8 0.2 100 76.66

9, 5, 8, 7 0.2 92 77.33

9, 5, 8, 7, 4 0.5 104 77.33

9, 5, 8, 7, 4, 2 0.5 104 81.11

The presented experiments show usefulness of the RBF 
network as the parametric fault classifier. Its accuracy depends 
on the quality of the available data, which depends on: 

 − the number of examples, representing behavior of the SUT 
for different values of parameters,
 − the number of accessible nodes (determining its testability),
 −domains of analysis (selected according to the SUT 
work regime).
Although the optimization process, i.e. adjustment of the 

network structure to the available data is time consuming and 
complex, it is performed in the SBT mode, therefore its duration 
is of secondary importance. The actual classification procedure 
is fast even for the most complex OvO scheme. To have idea 
of the proper network structure prior to the training, the data 
set processing (such as the correlation analysis) should first be 
performed. Also, comparison between different variants of the 
ANN-based diagnostic modules should be made. Currently, there 
are multiple alternative configurations usable for the diagnostic 
task, such as the RBF network, MLP or SVM. Selection of the 
best network may depend on the analyzed case.

Fig. 13. Diagnostic accuracy of the RBF ANN-based classifier 
depending on the training data set size
Rys. 13. Dokładność diagnostyki klasyfikatora wykorzystującego sieć RBF 
w zależności od rozmiaru zbioru danych
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Multiple applications of the neural networks to the diagno-
stic domain are related to their wide software and hardware 
implementations and versatility, making them usable in most 
contemporary problems. Diagnostics of analog systems often 
uses various architectures, depending on the particular aim, 
and specific conditions (like separability of faults based on 
the available set of symptoms). Although knowledge stored in 
the ANN structure is illegible for the human expert, ANN are 
a handy tool, which (after sometimes time consuming optimi-
zation) provide high accuracy. The duration of operation is 
short enough to make them usable in the on-line mode.

Future implementations and development of ANN should 
cover simplification of architectures with the increase of the 
generalization ability. Such effects as tolerance of elements or 
environmental noise require more sophisticated approaches, 
like RNN or SVM. Hierarchical approaches, although seem-
ingly more complex, may include simple structures of classifica-
tion/regression machines. This leads to the overall simple and 
fast diagnostic module. Also, combination of ANN with other 
AI-based methods should be investigated. Such solutions may 
be required to solve problems still existing in the domain, such 
as isolation of multiple faults at the same time [36] or accurate 
diagnostics of complex systems [1, 37].
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Streszczenie: W artykule przedstawiono zastosowania sztucznych sieci neuronowych w diagnostyce 
systemów analogowych. Opisano główne cele diagnostyki oraz problemy spotykane obecnie podczas 
detekcji i lokalizacji uszkodzeń. Wprowadzono ogólną strukturę systemu diagnostycznego opartego 
na metodach sztucznej inteligencji. Przedstawiono różne metody inteligentne, które mogą zostać 
zastosowane w systemie działającym w trybie on-line. Następnie omówiono ogólną architekturę 
sztucznej sieci neuronowej oraz jej cechy szczególnie istotne z punktu widzenia detekcji i lokalizacji 
uszkodzeń. Specyficzne architektury sieci wraz z ich zastosowaniami diagnostycznymi przedstawiono 
w szczegółach. Na przykładzie filtru dolnoprzepustowego 5. rzędu przedstawiono działanie metody 
diagnostycznej wykorzystującej sieć neuronową typu RBF. Omówiono możliwości i ograniczenia 
stosowalności sztucznych sieci neuronowych jako narzędzia diagnostycznego. 
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