PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An overview of heat transfer enhancement based upon nanoparticles influenced by induced magnetic field with slip condition via finite element strategy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively to explore the phenomenon of thermal performance of the combination fluid. A remarkable enhancement in thermal performance is noticed when solid structures are dispersed in the working fluid. The Biot number determines the convective nature of the boundary. When the Biot number is increased, the fluid temperature decreases significantly. Among copper oxide, aluminium oxide, and titanium oxide nanoparticles, copper oxide nanoparticles are found to be the most effective thermal enhancers.
Rocznik
Strony
200--206
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Materials and Manufacturing, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
Bibliografia
  • 1. Khan WA, Aziz A. Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes. International Journal of Thermal Sciences. 2011;50(11):2154-60.
  • 2. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer methods in applied mechanics and engineering. 2017;315:1011-24.
  • 3. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. Journal of Thermal Analysis and Calorimetry. 2019;135(2):947-61.
  • 4. Sheikholeslami M, Zeeshan A. Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. International Journal of Numerical Methods for Heat & Fluid Flow. 2018;28(3):641-60.
  • 5. Hanif H, Khan I, Shafie S. MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Physica Scripta. 2019;94(12):125208.
  • 6. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al 2 O 3 nanoparticles on the MHD convective heat transportation in porous medium. Journal of Thermal Analysis and Calorimetry. 2019;1-9.
  • 7. Ismail AI. Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation. Alexandria Eng. J. 2016; 55:1305–1319.
  • 8. Saleem S, Shafee A, Nawaz M, Dara RN, Tlili I, Bonyah E. Heat transfer in a permeable cavity filled with a ferrofluid under electric force and radiation effects. AIP Advances. 2019;9(9):095107.
  • 9. Alharbi SO, Nawaz M, Nazir U. Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field. AIP Advances. 2019;9(11):115022.
  • 10. Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Hatami M. Fe3O4–(CH2OH) 2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. Journal of Molecular Liquids. 2018;258:172-85.
  • 11. Nawaz M, Rana S, Qureshi IH. Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: a Galerkin finite element method. RSC advances. 2018;8(67):38324-35.
  • 12. Nawaz M, Rana S, Qureshi IH, Hayat T. Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects. AIP Advances. 2018;8(10):105109.
  • 13. Hatami M, Hosseinzadeh K, Domairry G, Behnamfar MT. Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(5):2238-45.
  • 14. Ali B, Nie Y, Khan SA, Sadiq MT, Tariq M. Finite element simulation of multiple slip effects on MHD unsteady Maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction. Processes. 2019;7:1–18.
  • 15. Balla CS, Naikoti K. Finite element analysis of magnetohydrodynamic transient free convection flow of nanofluid over a vertical cone with thermal radiation. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2016;230:161–173.
  • 16. Li Z, Sheikholeslami M, Mittal AS, Shafee A, Haq RU. Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. The European Physical Journal Plus. 2019;134(1):30.
  • 17. Sheikholeslami M, Saleem S, Shafee A, Li Z, Hayat T, Alsaedi A, Khan MI. Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Computer Methods in Applied Mechanics and Engineering. 2019;349:839-58.
  • 18. Saleem S, Firdous H, Nadeem S, Khan AU. Convective heat and mass transfer in magneto Walter’s B nanofluid flow induced by a rotating cone. Arabian Journal for Science and Engineering. 2019;44(2):1515-23.
  • 19. Sadiq MA, Khan AU, Saleem S, Nadeem S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC advances. 2019;9(9):4751-64.
  • 20. Ramzan M, Sheikholeslami M, Saeed M, Chung JD. On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface. Scientific reports. 2019;9(1):562.
  • 21. Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural Convection Analysis in a Cavity with an Inclined Elliptical Heater Subject to Shape Factor of Nanoparticles and Magnetic Field. Arabian Journal for Science and Engineering. 2019:1-3.
  • 22. Saleem S, Nadeem S, Rashidi MM, Raju CS. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsystem Technologies. 2019;25(2):683-9.
  • 23. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H 2 O nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019;41(6):249.
  • 24. Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji DD, Ranjbar AA. Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Studies in Thermal Engineering. 2019;13:100356.
  • 25. Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD. Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transfer—Asian Research. 2019;48(2):744-59.
  • 26. Afridi MI, Qasim M, Saleem S. Second law analysis of three dimensional dissipative flow of hybrid nanofluid. Journal of Nanofluids. 2018;7(6):1272-80.
  • 27. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Advances. 2019;9(2):025103.
  • 28. Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Studies in Thermal Engineering. 2019;14:100460.
  • 29. Sheikholeslami M, Jafaryar M, Barzegar GM, Alavi AH.Influence of novel turbulator on efficiency of solar collector system. Environmental Technology and Innovation. 2022;26:102383.
  • 30. Sheikholeslami M, Ebrahimpour Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape, International Journal of Thermal Sciences. 2022;176:107505.
  • 31. Sheikholeslami M, Farshad SA, Gerdroodbary MB, Alavi AH. Impact of new multiple twisted tapes on treatment of solar heat exchanger. The European Physical Journal Plus. 2022;137:86.
  • 32. Zeeshan A, Shehzad N, Atif M, Ellahi R, Sait SM. Electromagnetic Flow of SWCNT/MWCNT Suspensions in Two Immiscible Water-and Engine-Oil-Based Newtonian Fluids through Porous Media. Symmetry. 2022;14(2):406.
  • 33. Hafeez MB, Amin R, Nisar KS, Jamshed W, Abdel-Aty AH, Khashan MM, Heat transfer enhancement through nanofluids with applications in automobile radiator, Case Studies in Thermal Engineering. 2021;27:101192.
  • 34. Bhatti MM, Arain MB, Zeeshan A, Ellahi R, Doranehgard MH. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage. 2022;45:103511.
  • 35. Khan AA, Ilyas S, Abbas T, Ellahi R. Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid. Journal of Central South University. 2021;28(11):3381-90.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c40b2a7a-362f-4423-bfd7-58f464bbcd7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.