PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-Reversible Ergodic Maps and the 2015 Ian Snook Prizes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time reversibility characteristic of Hamiltonian mechanics has long been extended to nonHamiltonian dynamical systems modeling nonequilibrium steady states with feedback-based thermostats and ergostats. Typical solutions are multifractal attractor-repellor phase-space pairs with reversed momenta and unchanged coordinates, (q; p)↔(q;--p). Weak control of the temperature, α p2 and its fluctuation, resulting in ergodicity, has recently been achieved in a threedimensional time-reversible model of a heat-conducting harmonic oscillator. Two-dimensional cross sections of such nonequilibrium flows can be generated with time-reversible dissipative maps yielding æsthetically interesting attractorrepellor pairs. We challenge the reader to find and explore such time-reversible dissipative maps. This challenge is the 2015 Snook-Prize Problem.
Słowa kluczowe
Twórcy
autor
  • Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
autor
  • Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
Bibliografia
  • [1] W. G. Hoover and C. G. Hoover, Simulation and Control of Chaotic Nonequilibrium Systems (World Scientific Publishers, Singapore, 2015).
  • [2] H. A. Posch and Wm. G. Hoover, Time-Reversible Dissipative Attractors in Three and Four Phase-Space Dimensions, Physical Review E 55, 6803-6810 (1997).
  • [3] W. G. Hoover, J. C. Sprott, and C. G. Hoover, Nonequilibrium Molecular Dynamics and Dynamical Systems Theory for Small Systems with Time-Reversible Motion Equations, Molecular Simulation (in press, 2015).
  • [4] W. G. Hoover, O. Kum, and H. A. Posch, Time-Reversible Dissipative Ergodic Maps, Physical Review E 53, 2123-2129 (1996).
  • [5] J. Kumi˘cák, Irreversibility in a Simple Reversible Model, Physical Review E 71, 016115 (2005), arχiv nlin/0510016.
  • [6] L. Ermann and D. L. Shepelyansky, Arnold Cat Map, Ulam Method, and Time Reversal, arχiv1107.0437.
  • [7] W. G. Hoover and C. G. Hoover, Comparison of Very Smooth Cell-Model Trajectories Using Five Symplectic and Two Runge-Kutta Integrators, Computational Methods in Science and Technology 21 (to appear, 2015), arχiv 1504.00620.
  • [8] D. Faranda, Analysis of Roundoff Errors with Reversibility Test as a Dynamical Indicator, arχiv 1205.3060.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c40823eb-9cbf-4d6d-bea3-805548e41e7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.