PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of hydrocarbon contamination on the engineering geological properties of Neogene clays and Pleistocene glacial tills from Central Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Petroleum products influence the engineering behaviour of the soil. Neogene clays and glacial tills from Central Poland were tested under laboratory conditions to evaluate the changes of selected physical and mechanical parameters: particle size distribution, particle density, swelling, shear strength and permeability. Four petroleum products were used in the experiments: diesel fuel, kerosene, jet fuel and mineral engine oil. The study revealed that even for the lowest degree of contamination the values of physical and mechanical properties of the soils changed significantly. Greater variation can be expected in soils contaminated with high-viscosity compounds. Also, higher relative changes were found for glacial tills than for Neogene clays. Consolidation tests revealed changes in soil permeability depending on the soil composition and the physical properties of the contaminant – considerable reduction of permeability was observed for glacial tills contaminated with light Jet fuel, while the reduction was lower for Neogene clays. The obtained results indicate the role of mesopores and the dimensionless pore pressure coefficient in changes of soil permeability. The methodological issues regarding testing and analysing the hydrocarbon-contaminated soils were also presented and discussed, which might be useful for researchers studying contaminated soils.
Rocznik
Strony
529--555
Opis fizyczny
Bibliogr. 97 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Ahmed, A.A., Abdelrahman, M.T. and Iskander, G.M. 2009. Compressibility of contaminated sand with petroleum oil. In: Hamza, M., Shahien, M. and El-Mossallamy, Y. (Eds), Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. The Academia and Practice of Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009, vol. 1, 44–47. IOS Press; US.
  • 2. Akinwumi, I.I., Maiyaki, U.R., Adubi, S.A., Daramola, S.O. and Ekanem, B.B. 2014. Effects of waste engine oil contamination on the plasticity, strength and permeability of lateritic clay. International Journal of Scientific and Technology Research, 3, 331–335.
  • 3. ASTM D 4546-96. 1995. Standard test methods for one-dimensional swell or settlement potential of cohesive soils. 4.09.ASTM International; West Conshohocken, PA, USA.
  • 4. ASTM D3080-04. 2004. Standard test method for direct shear test of soils under consolidated drained conditions. 4.08.
  • 5. ASTM International; West Conshohocken, PA, USA.
  • 6. Barański, M. 2000. Strength and deformation behaviour of a glacial till contaminated with petroleum benzene at the site of Petrochemia Płock S.A. Unpublished PhD Thesis, 223 pp. University of Warsaw, Warszawa. [In Polish]
  • 7. Berendt, G. 1867. Beitrag zur Lagerung und Verbreitung des Tertiärgebirges im Bereiche der Provinz Preussen. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg, 8, 73–84.
  • 8. Birdi, K.S. 2003. Handbook of Surface and Colloid Chemistry, 2nd ed., 784 pp. CRC Press; Boca Raton/London/New York/Washington.
  • 9. Bobrowska, M. 2008. Influence of bioremediation on physical properties of oil-polluted soils from Legnica. Zeszyty Naukowe Państwowej Wyższej Szkoły Zawodowej im. Witelona w Legnicy, 3, 17–26. [In Polish]
  • 10. Chen, J., Anandarajah, A. and Inyang, H. 2000. Pore fluid properties and compressibility of kaolinite. Journal of Geotechnical and Geoenvironmental Engineering, 126, 798–807.
  • 11. Cyrus, S., Kumar, T.G., Abraham, B.M., Sridharan, A. and Jose, B.T. 2010. Effect of industrial wastes on the physical and engineering properties of soils. In: Proceedings of the Indian Geotechnical Conference GEOtrendz; Mumbai, India, 16–18 December 2010, 357–360. IGS Mumbai Chapter & IIT Bombay; Bombay.
  • 12. Czarnecki, A. and Czerny, B. 1960. Dokumentacja złoża pstrych iłów poznańskich do produkcji kruszywa lekkiego w Budach Mszczonowskich. Centralny Urząd Geologii, Przedsiębiorstwo Geologiczne Surowców Skalnych w Krakowie, Kraków. Archiwum Państwowego Instytutu Geologicznego, 4131/55.
  • 13. Czarnecki, A. and Niedzielski, A. 1961. Dokumentacja geologiczna złoża pstrych iłów poznańskich Budy Mszczonowskie, do produkcji kruszywa lekkiego. Centralny Urząd Geologii, Przedsiębiorstwo Geologiczne Surowców Skalnych w Krakowie. Archiwum Państwowego Instytutu Geologicznego, 4131/58.
  • 14. Dobak, P. 1999. Rola czynnika filtracyjnego w badaniach jednoosiowej konsolidacji gruntów, 230 pp. Wydawnictwa IG-SMiE PAN; Kraków.
  • 15. Dobak, P. 2008. Evaluation of consolidation parameters in CL tests; theoretical and practical aspects. Geological Quarterly, 52, 397–410.
  • 16. Dyjor, S. 1970. The Poznań series in west Poland. Geological Quarterly, 14, 819–835. [In Polish]
  • 17. Echeverri-Ramirez, Ó., Valencia-Gonzalez, Toscano-Patino, D.E., Ordonez-Munoz, F.A., Arango-Salas, C. and OsorioTorres, S. 2015. Geotechnical behavior of a tropical residual soil contaminated with gasoline. DYNA, 82 (190), 31–37.
  • 18. Elisha, A.T. 2012. Effect of crude oil contamination on the geotechnical properties of soft clay soils of Niger Delta region of Nigeria. Electronic Journal of Geotechnical Engineering, 17, 1929–1938.
  • 19. Frankowski, Z. and Wysokiński, L. 2000. Atlas geologiczno-inżynierski Warszawy. Centralne Archiwum Geolologiczne PIG-PIB; Warszawa.
  • 20. Gupta, M.K., Srivastava, R.K. and Singh, A.K. 2009. Hydraulic conductivity and consolidation behavior of lubricant oil contaminated alluvial soils. The International Journal of Earth Sciences and Engineering, 2 (4), 360–366.
  • 21. Hafshejani, A. and Hajiannia, A. 2016. Contamination dispersion on the load bearing capacity of in-situ concrete piles in SM soils. Electronic Journal of Geotechnical Engineering, 21 (08), 2857–2869.
  • 22. Hangshemo, H. and Arabani, M. 2022. Geotechnical properties of oil-polluted soil: a review. Environmental Science and Pollution Research International, 29 (22), 32670–32701.
  • 23. Harsh, G., Patel, A., Himanshu, B. and Tiwari, P. 2016. Effect of rate of crude oil contamination on index properties and engineering properties of clays and sands. Indian Journal of Science and Technology, 9 (30), 106.
  • 24. Head, K.H. 1992. Manual of Soil Laboratory Testing, 1: Soil Classification and Compaction Tests, 388 pp. Pentech Press; London.
  • 25. Huang, F. and Lu, H. 2014. Experimental Research of the Influence Factors on the Permeability of Oil-Polluted Clay. Electronic Journal of Geotechnical Engineering, 19, 2597–2605.
  • 26. Izdebska-Mucha, D. 2003. Effect of petrol and diesel oil on deformation properties of monomineral clays and fine soils. Unpublished PhD Thesis, 95 pp. University of Warsaw; Warszawa. [In Polish]
  • 27. Izdebska-Mucha, D. 2005. Influence of oil pollution on selected geological-engineering properties of clay soils. Przegląd Geologiczny, 53 (9), 766–769. [In Polish]
  • 28. Izdebska-Mucha, D. and Korzeniowska-Rejmer, E. 2010. Selected characteristics of clay soils polluted by petroleum substances in the context of their barrier properties. In: Datta, M., Srivastava, R.K., Ramana, G.V. and Shahu, J.T. (Eds), Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, India, 8–12 November, 2010, ‘Environmental Geotechnics for Sustainable Development’, vol. 1, 705–710. Tata McGraw Hill Education Private Limited; New Delhi.
  • 29. Izdebska-Mucha, D., Szyszko, C. and Trzciński, J. 2011. Engineering geological and microstructural properties of glacial tills polluted with petroleum substances. Biuletyn Państwowego Instytutu Geologicznego, 446, 459–468. [In Polish]
  • 30. Izdebska-Mucha, D. and Trzciński, J. 2011. Microstructural properties of alluvial clayey soils polluted with petroleum fuels for a long period of time. Biuletyn Państwowego Instytutu Geologicznego, 446, 469–476. [In Polish]
  • 31. Izdebska-Mucha, D. and Trzciński, J. 2021. Clay soil behaviour due to long-term contamination by liquid petroleum fuels: microstructure and geotechnical properties. Bulletin of Engineering Geology and the Environment, 80, 3193–3206.
  • 32. Izdebska-Mucha, D., Trzciński, J. and Klein, M. 2021. The effect of diesel fuel contamination on the particle size distribution and plasticity of muds from the area of Warsaw-Siekierki. Przegląd Geologiczny, 69 (12), 800–810. [In Polish]
  • 33. Izdebska-Mucha, D. and Wójcik, E. 2014. Expansivity of Neogene clays and glacial tills from Central Poland. Geological Quarterly, 58, 281–290.
  • 34. Izdebska-Mucha, D. and Wójcik, E. 2015. Evaluation of expansivity of Neogene clays and glacial tills from central Poland on the basis of suction tests. Geological Quarterly, 59, 593–602.
  • 35. Izdebska-Mucha, D. and Wójcik, E. 2016. Identification of clay soil mineralogy and swelling by the free swell ratio method. Biuletyn Państwowego Instytutu Geologicznego, 466, 77–86. [In Polish]
  • 36. Izdebska-Mucha, D. and Wójcik, E. 2021. Shrinkage properties of natural and diesel oil-contaminated fine soils from central Poland. Quarterly Journal of Engineering Geology and Hydrogeology, 55, qjegh2021-006.
  • 37. Jentzsch, A. 1876. Die geognostische Durchforschung der Provinz Preussen im Jahre 1876. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg, 17, 109–170.
  • 38. Jia, Y.G., Wu, Q., Meng, X.M., Yang, X.J., Yang, Z.N. and Zhang, G.C. 2010. Case study on influences of oil contamination on geotechnical properties of coastal sediments in the Yellow River Delta. In: Chen, Y.M., Tang, X.W. and Zhan, L.T. (Eds), Advances in Environmental Geotechnics. Proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009, 767–771. Springer.
  • 39. Jia, Y., Wu, Q., Shang, H., Yang, Z.N. and Shan, H. 2011. The influence of oil contamination on the geotechnical properties of coastal sediments in the Yellow River Delta, China. Bulletin of Engineering Geology and the Environment, 70, 517–525.
  • 40. Joseph, J. and Hari, G. 2015. Investigation on the Effects of Hydrocarbon Spillage on Soil Properties. International Journal of Engineering Research and Technology, 4 (10), 136–140.
  • 41. Kaczyński, R. 2003. Overconsolidation and microstructures in Neogene clays from the Warsaw area. Geological Quarterly, 47, 43–54.
  • 42. Kaczyński, R. 2011. Engineering-geological characteristics of typical soils in Poland. Biuletyn Państwowego Instytutu Geologicznego, 446/2, 329–340. [In Polish]
  • 43. Kaczyński, R. 2017. Warunki geologiczno-inżynierskie na obszarze Polski, 396 pp. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy; Warszawa.
  • 44. Kaczyński, R. and Grabowska-Olszewska, B. 1997. Soil mechanics of the potentially expansive clays in Poland. Applied Clay Science, 11, 337–355.
  • 45. Karkush, M.O., Zaboon, A.T. and Hussien, H.M. 2013. Studying the effects of contamination on the geotechnical properties of clayey soil. In: Manaserro, M., Dominijanni, A., Foti, S. and Musso, G. (Eds), Coupled phenomena in environmental geotechnics, 599–608. Taylor & Francis Group; London.
  • 46. Kaya, A. and Fang, H. 2000. The effects of organic fluids on physicochemical parameters of fine-grained soils. Canadian Geotechnical Journal, 37, 943–950.
  • 47. Kaya, A. and Fang, H. 2005. Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic liquids. Canadian Geotechnical Journal, 42, 632–640.
  • 48. Kermani, M. and Ebadi, T. 2012. The effect of oil contamination on the geotechnical properties of fine-grained soils. Soil and Sediment Contamination: An International Journal, 21, 655–671.
  • 49. Khamehchiyan, M., Charkhabi, A.H. and Tajik, M. 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89, 220–229.
  • 50. Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H. 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, 11–16.
  • 51. Korzeniowska, E., Motak, E. and Rawicki, Z. 1995. Wpływ zanieczyszczeń olejowych na stan techniczny podłoża gruntowego i budynku. Przegląd Budowlany, 10, 13–15.
  • 52. Korzeniowska-Rejmer, E. 2001. Wpływ zanieczyszczeń ropopochodnych na charakterystykę geotechniczną gruntów stanowiących podłoże budowlane. Inżynieria Morska i Geotechnika, 2, 83–86.
  • 53. Korzeniowska-Rejmer, E. and Izdebska-Mucha, D. 2006. Evaluation of the influence of oil pollution on particle size distribution and plasticity of clay soils. Inżynieria i Ochrona Środowiska, 9, 89–103. [In Polish]
  • 54. Kozydra, Z. and Wyrwicki, R. 1970. Surowce ilaste, 208 pp. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 55. Lindner, L. 1992. Stratygrafia (klimatostratygrafia) czwartorzędu. In: Lindner, L. (Ed.), Czwartorzęd: osady, metody badań, stratygrafia, 441–633. Wydawnictwa PAE; Warszawa.
  • 56. Łuczak-Wilamowska, B. 2002. Neogene clays from Poland as mineral sealing barriers for landfills: Experimental study. Applied Clay Science, 21 (1), 33–43.
  • 57. Łuczak-Wilamowska, B. 2013. Geological conditions of municipal waste landfilling. Biuletyn Państwowego Instytutu Geologicznego, 455, 1–142. [In Polish]
  • 58. Majeed, A.H. and Majeed, A.W. 2017. Effect of using petroleum products on the characteristics of expansive soil. Journal of Engineering and Sustainable Department, 21 (5), 171–183.
  • 59. Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A. and Woronko, B. 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica, 66, 403–427.
  • 60. Mesri, G. and Olson, R. 1971. Mechanisms controlling the permeability of clays. Clays and Clay Minerals, 19, 151–158.
  • 61. Mosleh, T.A. and Al-Obaidy, N. 2021. A critical review on expansive soils including the influence of hydrocarbon pollution and the use of electrical resistivity to evaluate their properties. IOP Conference Series: Materials Science and Engineering, 1076, 012097.
  • 62. Myślińska, E. 2016. Laboratoryjne badania gruntów i gleb, 280 pp. Wydawnictwa Uniwersytetu Warszawskiego; Warszawa.
  • 63. Nasehi, S.A., Uromeihy, A. and Nikudel, M.N. 2016. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34, 333–345.
  • 64. Nazir, A.K. 2011. Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal, 50, 331–335.
  • 65. Nowak, J. 1971a. Mapa geologiczna Polski, skala 1:200 000, Warszawa Wschód. Wydawnicta Geologiczne; Warszawa.
  • 66. Nowak, J. 1971b. Objaśnienia do Mapy geologicznej Polski w skali 1:200 000, Warszawa Wschód, 95 pp. Wydawnictwa Geologiczne; Warszawa.
  • 67. Odrzywolska-Bieńkowa, E. and Pożaryska, K. 1981. Micropaleontological stratigraphy of the Paleogene in the Fore-Sudetic Monocline. Bulletin de l’Academie Polonaise des Sciences. Serie Sciences de la Terre, 29, 23–27.
  • 68. Olchawa, A. and Kumor, M. 2007. Compressibility of organic soils polluted with diesel oil. Archives of Hydro-Engineering and Environmental Mechanics, 54 (4), 299–307.
  • 69. Oyegbile, O.B. and Ayininuola, G.M. 2013. Laboratory studies on the influence of crude oil spillage on lateric soil shear strength: a case study of Niger Delta area of Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 3 (2), 73–83.
  • 70. O’Shay, T.A. and Hoddinott, K.B. 1994. Analysis of soils contaminated with petroleum constituents, 120 pp. ASTM Publication; Philadelphia, USA.
  • 71. Piotrowska, K. and Kamiński, M. 2005. Objaśnienia do Szczegółowej mapy geologicznej Polski w skali 1:50 000, Mińsk Mazowiecki, 30 pp. Państwowy Instytut Geologiczny; Warszawa.
  • 72. Piwocki M. and Ziembińska-Tworzydło, M. 1995. Lithostratigraphy and spore-pollen zones in the Neogene of Polish Lowlands. Przegląd Geologiczny, 43 (11), 916–927. [In Polish]
  • 73. PKN-CEN ISO/TS 17892-4:2009. Geotechnical investigation and testing – Laboratory testing of soil - Part 4: Determination of particle size distribution. Polski Komitet Normalizacyjny; Warszawa. [In Polish]
  • 74. PN-88/B-04481. Grunty budowlane - Badania próbek gruntu. Polski Komitet Normalizacyjny; Warszawa.
  • 75. PN-EN ISO 14688-1:2018-05 - Geotechnical investigation and testing - Identification and classification of soil - Part 1: Identification and description. Polski Komitet Normalizacyjny; Warszawa. [In Polish]
  • 76. Rahman, Z.A., Hamzah, U., Taha, M.R., Ithnain, N.S. and Ahmad, N. 2010. Influence of oil contamination on geotechnical properties of basaltic residual soil. American Journal of Applied Sciences, 7 (7), 954–961.
  • 77. Rajabi, H. and Sharifipour, M. 2017. Geotechnical properties of hydrocarbon-contaminated soils: a comprehensive review. Bulletin of Engineering Geology and the Environment, 78, 3685–3717.
  • 78. Rasheed, Z.N., Ahmed, F.R. and Jassim, H.M. 2014. Effect of crude oil products on the geotechnical properties of soil. WIT Transactions on Ecology and the Environment, 186, 353–362.
  • 79. Raveendran, G. and Poulose, E. 2016. Effect of motor oil spillage on the properties of silty clay. International Journal of Scientific Engineering and Research, 4 (3), 39–41.
  • 80. Safety data sheet – Automotive Diesel Fuel, 2005, Polski Koncern Naftowy ORLEN S.A.
  • 81. Safety data sheet – Aviation Jet Fuel JET A-1, 1998, Polski Koncern Naftowy ORLEN S.A.
  • 82. Safety data sheet – Engine Oil LO 8-0, 2006, LOTOS Oil Group. Safety data sheet – Kerosene, 2002, Dragon Poland.
  • 83. Salimnezhad, A., Soltani-Jigheh, H. and Abolhasani Soorki, A. 2021. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13 (3), 653–670.
  • 84. Siang, A.J.L.M., Wijeyesekera, D.C., Yahyda, S.M.A.S. and Ramlan, M. 2014. Innovative testing investigations on the influence of particle morphology and oil contamination on the geotechnical properties of sand. International Journal of Integrated Engineering, 6 (2), 60–66.
  • 85. Silvestri, V., Mikhail, N. and Soulié, M. 1997. Permeability response of oil-contaminated compacted clays. In: Wasemiller, M.A. and Hoddinott, K.B. (Eds), Testing soil mixed with waste or recycled material, 62–75. ATSM International; Fredericksburg, USA.
  • 86. Sokolov, V.N., Yurkovets, D.I. and Razgulina, O.V. 2002. STI-MAN (Structural Image Analysis): a software for quantitative morphological analysis of structures by their images (User manual. Version 2.0). Laboratory of Electron Microscopy, Moscow State University; Moscow.
  • 87. Sridharan, A. and Prakash, K. 1999. Mechanisms Controlling the Undrained Shear Strength Behaviour of Clays. Canadian Geotechnical Journal, 36 (6), 1030–1038.
  • 88. Sridharan, A., Rao, S.M. and Murthy, N.S. 1985. Free swell index of soils: a need for redefinition. Indian Geotechnical Journal, 15 (2), 94–99.
  • 89. Srivastava, R.K. and Pandey, V.D. 1998. Geotechnical evaluation of oil contaminated soil. In: Sarsby, R.W. (Ed.), The proceeding of GREEN 2 in the Second International Symposium on Geotechnics Related to the Environment, Kraków, Poland, 1998, 204–209. Thomas Telford; London.
  • 90. Stajszczak, P. 2017. Evaluation of expansive properties of Mio-Pliocene clays from the Budy Mszczonowskie region. Przegląd Geologiczny, 65 (3), 168–176. [In Polish]
  • 91. Stajszczak, P. 2019. The effect of hydrocarbon pollution on the changes of filtration, consolidation and microstructure parameters of cohesive soils. Unpublished PhD Thesis, 228 pp. University of Warsaw; Warszawa. [In Polish]
  • 92. Stajszczak, P. 2021. Changes in the filtration properties of the sand and clay mixture as a result of contamination with petroleum products in the aspect of mineral insulation barriers. Przegląd Geologiczny, 69 (1), 33–42. [In Polish]
  • 93. Streche, C., Cocârţǎ, D.M., Istrate, I.-A. and Badea, A.A. 2018. Decontamination of petroleum-contaminated soils using the electrochemical technique: remediation degree and Energy consumption. Scientific Reports, 8, 3272.
  • 94. Surygała, J. 2000. Zanieczyszczenia naftowe w gruncie, 239 pp. Oficyna Wydawnicza Politechniki Wrocławskiej; Wrocław.
  • 95. Szyszko, C. 2013. Influence of petroleum pollution on expansiveness of selected clay soils. Unpublished Msc thesis, 82 pp. University of Warsaw; Warszawa. [In Polish]
  • 96. Talukdar, D.K. and Saikia, B.D. 2010. Effect of crude oil on some properties of clayey soils. In: Proceedings of the Indian Geotechnical Conference GEOtrendz; Mumbai, India, 16–18 December 2010, 349–352. IGS Mumbai Chapter & IIT Bombay; Mumbai.
  • 97. Trzciński, J. 2004. Combined SEM and computerized image analysis of clay soils microstructure: technique and application. In: Jardine, R.J., Potts, D.M. and Higgins, K.G. (Eds), Advances in geotechnical engineering: The Skempton conference, 654–666. Thomas Telford; London.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c40657c1-8403-4cba-b529-f310cae4b875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.