Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grain growth kinetics in 0.1 to 2 mol % B2O3 -added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 t exp(-Q/RT) together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 0.1 mol % B2O3 -doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n) and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 2 mol % B2O3 -doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning) mechanism in the liquid phase sintering.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
220--229
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Istanbul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Avcilar, 34320, Istanbul, Turkey
autor
- Istanbul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Avcilar, 34320, Istanbul, Turkey
Bibliografia
- [1] SUCHEA M., CHRISTOULAKIS S., MOSCHOVIS K., KATSARAKIS N., KIRIAKIDIS G., Thin Solid Films, 515 (2006), 551.
- [2] SENDA T., BRADT R.C., J. Am. Ceram. Soc., 73 (1990), 106.
- [3] LOKHANDE B.J., PATIL P.S., UPLANE M.D., Physica B, 302 – 303 (2001), 59.
- [4] CHEN X.L., XU B.H., XUE J.M., ZHAO Y., WEI C.C., SUN J., WANG Y., ZHANG X.D., GENG X.H., Thin Solid Films, 515 (2007), 3753.
- [5] ISHIZAKI H., IMAIZUMI M., MATSUDA S., IZAKI M., ITO T., Thin Solid Films, 411 (2002), 65.
- [6] TAHAR R.B.H., TAHAR N.B.H., J. Mater. Sci., 40 (2005), 5285.
- [7] GAO P.X., WANG Z.L., J. Appl. Phys., 97 (2005), 044304 1.
- [8] ISLAM M.N., SAMANTARAY B.K., CHOPRA K.L., ACHARYA H.N., Sol. Energ. Mat. Sol. C., 29 (1993), 27.
- [9] OBA F., NISHITANI S. R., ISOTANI S., ADACHI H., TANAKA I., J. Appl. Phys., 90 (2001), 824.
- [10] HAGEMARK K. I., J. Solid State Chem., 16 (1976), 293.
- [11] MAHAN G.D., J. Appl. Phys., 54 (1983), 3825.
- [12] ZIEGLER E., HEINRICH A., OPPERMANN H., STR¨O VER G., Phys. Status Solidi A, 66 (1981), 635.
- [13] NEUMANN G., Phys. Status Solidi B, 105 (1981), 605.
- [14] MARKEVICH I. V., KUSHNIRENKO V. I., BORKOVSKA L. V., BULAKH B. M., Phys. Status Solidi C, 3 (4) (2006), 942.
- [15] HAUSMANN A., SCHALLENBERGER B., Z. Phys. B, 31 (1978), 269.
- [16] HAN J., MANTAS P.Q., SENOS A.M.R., J. Eur. Ceram. Soc., 21 (2001), 1883.
- [17] YOON M.H., LEE S.H., PARK H.L., KIM H.K., JANG M.S., J. Mater. Sci. Lett., 21 (2002), 1703.
- [18] ZHANG Y., HAN J., Mater. Lett., 60 (2006), 2522.
- [19] TOPLAN O., GUNAY V., OZKAN T.O., Ceram. Int., 23 (1997), 251.
- [20] HAN J., MANTAS P.Q., SENOS A.M.R., J. Eur. Ceram. Soc., 20 (2000), 2753.
- [21] ABDUEV A.K., ASVAROV S., AKHMEDOV A.K., KAMILOV I.K., US Patent 20090218735 A1, 3. Sep. 2009.
- [22] KUSHNIRENKO V.I., MARKEVICH I.V., RUSAVSKY A.V., Radiat. Meas., 45 (2010), 468.
- [23] LEVINSON L. M., US patent 4460623, 17. Jul. 1984.
- [24] LIU F., XU G., DUAN L., LI Y., LI Y., CUI P., J. Alloy. Compd., 509 (2011), L56.
- [25] GLOT A. B., MAZURIK S. V., Inorg. Mater.+, 36 (2000), 636.
- [26] CHENG L., LI G., YUAN K., MENG L., ZHENG L., J. Am. Ceram. Soc., 95 (2012), 1004.
- [27] GUPTA T. K., COBLE R. L., J. Am. Ceram. Soc., 51 (1968), 521.
- [28] NORRIS L.F., PARRAVANO G., J. Am. Ceram. Soc., 46 (1963), 449.
- [29] NICHOLSON G.C., J. Am. Ceram. Soc., 48 (1965), 214.
- [30] WONG J., J. Appl. Phys., 51 (1980), 4453.
- [31] ASOKAN T., IYENGAR G.N., NAGABHUSHANA G.R., J. Mater. Sci., 22 (1987), 2229.
- [32] FAN J., SALE F.R., J. Am. Ceram. Soc., 20 (2000), 2743.
- [33] HNG H. H., HALIM L., Mater. Lett., 57 (2003), 1411.
- [34] HAN J., MANTAS P.Q., SENOS A.M.R., J. Mater. Res., 16 (2001), 459.
- [35] BRADT R.C., NUNES S.I., SENDA T., SUZUKI H., BURKETT S.L., Grain Growth, in: GERMAN R.M., MESSING G.L., CORNWALL R.G. (Eds.), Sintering Technology, Marcel Dekker, New York, 1996, p. 389.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c405a048-632c-4741-b7d8-c2721296572b