PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of particle size distribution and morphology of alumina-yttria-ceria-zirconia powders obtained via sol–gel route

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Oxide-doped zirconia is currently commonly used ceramics in dental prosthetics. However, its use raises a lot of controversy. This is related to the stability of the zirconia metastable phases in the human mouth environment and it sensitivity for the so-called low-temperature degradation. A key way to avoid this type of negative phenomena is doping ZrO2 with selected metal oxide sand choosing appropriate methods for the synthesis of ceramic powders. Objective: The aim of this paper is to present investigations of modification and to analyse the influence of chemical composition and volume of parent-solvent for the morphology and thermal properties of ceramic powders prepared in a ZrO2-CeO2-Y2O3-Al2O3 system. Methods: The powders were obtained by using the sol–gel method in an inert gas atmosphere and ambient temperature using zirconium n-propoxide for this purpose. Morphology was examined by using scanning electron microscopy (SEM) and particle size distribution (PSD); thermal properties was evaluated using thermogravimetric analysis (TGA/DTA/DTG), and chemical composition was confirmed by using electron probe microanalysis (EPMA). Results: Depending from the volume of the CeO2 precursor solution of and regardless of the volume of the second oxide precursor, was observed difference in morphology of the obtained powders. Overall trend is related to reduce the size of agglomerates with an increase in the volume of the precursor of CeO2. Conclusions: The influence of various chemical compositions for morphology and thermal properties is negligible. In contrast, a clear correlation is observed between the volume of parent alcohol for both morphology and thermal properties. Use of sol–gel method to further research in view of these results appears to be appropriate.
Twórcy
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland; Charles de Gaulle'a 40 st, 41-800 Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Institute for Chemical Processing of Coal, Zabrze, Poland
autor
  • Department of Optoelectronics, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Chemical Engineering and Process Design, Faculty of Chemistry, SilesianUniversity of Technology, Gliwice, Poland
autor
  • Department of Dental Technology, Medical College of Zabrze, Zabrze, Poland
Bibliografia
  • [1] Denry I, Holloway JA. Ceramics for dental applications: a review. Materials 2010;3:351–68.
  • [2] Al-Amaleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641–52.
  • [3] Albrecht T, Kirsten A, Kappert HF, Fischer H. Fracture load of different crown systems on zirconia implant abutments. Dent Mater 2011;27:298–303.
  • [4] Zarone F, Russo S, Sorrentino R. From porcelain-fused-tometal to zirconia: clinical and experimental considerations. Dent Mater 2011;27:83–96.
  • [5] Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289–98.
  • [6] Hajizadeh-Oghaz M, Razavi RS, Estarli ML. Large-scale synthesis of YSZ nanopowder by Pechini method. Bull Mater Sci 2014;37(5):969–73.
  • [7] Fabbri P, Piconi C, Burresi E, Maganami G, Mazzanti F, Mingazzini C. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dent Mater 2014;30:138–42.
  • [8] Borchers L, Stiesch M, Bach FW, Buhl JCh, Hűbsch Ch, Kellner T, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547–52.
  • [9] Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535–43.
  • [10] Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009;92 (9):1901–20.
  • [11] Guo X. Hydrothermal degradation mechanism of tetragonal zirconia. J Mater Sci 2001;36:3737–44.
  • [12] Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecule. Chem Mater 2004;16:3988–94.
  • [13] Guo X, Zhang Z. Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Mater 2003;51:2539–47.
  • [14] Deville S, Guenin G, Chevalier J. Martensitic transformation in zirconia: part I. Nanometer scale prediction and measurement of transformation induced relief. Acta Mater 2004;52:5697–707.
  • [15] Deville S, Guenin G, Chevalier J. Martensitic transformation in zirconia: part II. Martensite growth. Acta Mater 2004;52:5709–21.
  • [16] Koenig V, Wulfman CP, Derbanne MA, Dupont NM, Le Goff S, Tang M-L, et al. Aging of dental prostheses: protocol for a 5-year prospective clinical study using ex vivo analyses. Contemp Clin Trials Commun 2016;15(4):25–32.
  • [17] Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia ceramics. J Am Ceram Soc 2000;83 (3):461–87.
  • [18] Nakonieczny DS, Ziębowicz A, Paszenda ZK, Krawczyk C. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications – a review. Biocybern Biomed Eng 2017;37:229–45.
  • [19] Chaim R, Basat G, Kats-Demyanets A. Effect of additives on grain growth during sintering of nanocrystalline zirconia alloys. Mater Lett 1998;35:245–50.
  • [20] Shirinparvar S, Razavi RS, Davar F, Loghman-Estarki MR, Hajizadeh-Oghaz M, Ghorbani S. Synthesis,characterization and optical properties of Zr+4/La+3/Nd+3 tridoped yttria nanopowder by sol–gel combustion method. Ceram Int 2016;42(9):10551–8.
  • [21] Kern F. Ytterbia-neodymia-costabilized TZP – breaking the limits of strength-toughness correlations for zirconia? J Eur Ceram Soc 2013;33:965–73.
  • [22] Nakonieczny DS, Paszenda ZK, Drewniak S, Radko T, Lis M. ZrO2-CeO2 ceramic powders obtained from a sol–gel process using acetylacetone as a chelating agent for potential application in prosthetic dentistry. Acta Bioeng Biomech 2016;3(18):53–60.
  • [23] Nakonieczny DS, Paszenda ZK, Basiaga M, Drewniak S, Bogacz W, Podwórny J, et al. Phase composition and morphology characteristics of ceria-stabilized zirconia powders obtained via sol–gel method with various pH conditions. Acta Bioeng Biomech 2017;2(19):21–30.
  • [24] Menvie Bekale V, Legros V, Haut C, Sattonnay G, Huntz AM. Processing and microstructure characterization of ceriadoped yttria-stabilized zirconia powder and ceramics. Solid State Ionics 2006;177:3339–47.
  • [25] Trusova EA, Khrushcheva AA, Vokhmintcec KV. Sol–gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc 2012;32:1977–81.
  • [26] Fábregas O, Fuentes RO, Lamas DG, Fernández de Rapp M, de Reca NW, Fantini MCA, et al. Local structure of metal–oxygen bond in compositionally homogeneous, zirconia-ceria solid solutions synthesized by a gel-combustion process. J Phys Condens Matter 2006;18:7863–81.
  • [27] Lebrun N, Perrot P. Cerium-oxygen-zirconium. Refractory metal systems: phase diagrams, crystallographic and thermodynamic data. Stuttgart: Materials Science International Services GmbH; 2010. p. 87–110.
  • [28] Hajizadeh-Oghaz M, Razavi RS, Ghasemi A. The effect of solution pH value on the morphology of ceria–yttria costabilized zirconia particles prepared using the polymerizable complex method. J Cluster Sci 2016;27 (2):469–83.
  • [29] Hajizadeh-Oghaz M, Razavi RS, Ghasemi A. Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. J Sol–Gel Sci Technol 2015;74 (3):606–12.
  • [30] Mamana N, Díaz-Parralejo A, Ortiz L, Sanchez-Bajo F, Caruso R. Influence of the synthesis process on the features of Y2O3-stabilized ZrO2 powders obtained by the sol–gel method. Ceram Int 2014;40:6421–6.
  • [31] Lughi Y, Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater 2010;26:807–20.
  • [32] Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J 2011;56(1):97–106.
  • [33] Nakonieczny DS, Paszenda ZK, Walke WM. Evaluation of thermal properties of ZrO2 powders modified with MgO and Y2O3. Eng Biomater 2013;120(XVI):8–13.
  • [34] Recommendation of Polish National Office of Chemical Substances regarding terminology: particle, agglomerates, aggregates www.chemikalia.gov.pl/zalecenia_dotyczące_definicji_nanomaterialu.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4055b70-5acf-42eb-8528-cc9a5251cda8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.