Identyfikatory
Warianty tytułu
Influence of a Proximity Effect and a Skin Effect on Copper Loss in an Electrical Motor
Języki publikacji
Abstrakty
W artykule przedstawiono analizę strat mocy w miedzi wywołanych efektem zbliżeniowym oraz naskórkowością przy sinusoidalnym wymuszeniu prądowym o niskich i wysokich częstotliwościach. Zbudowane dwuwymiarowe (2D) i trójwymiarowe (3D) modele obliczeniowe w programie wykorzystującym metodę elementów skończonych (MES) do obliczeń pola magnetycznego posłużyły do pokazania wpływu efektu naskórkowości oraz efektu zbliżeniowego na straty mocy w uzwojeniu z uwzględnieniem połączeń czołowych. W niniejszej pracy zbadano wpływ połączeń czołowych na wielkość strat mocy w miedzi. Dodatkowo zbadano wpływ rozmieszczenia uzwojeń o przekroju kołowym w żłobku na straty w miedzi maszyny. Do przedstawienia wielkości strat mocy w miedzi przy różnych częstotliwościach uzwojenia zasilanego ze źródła prądowego wyznaczono stosunek rezystancji przy prądzie zmiennym do rezystancji przy prądzie stałym.
In this paper three-dimensional (3D) and two-dimensional (2D) finite element analysis was applied to calculate copper losses and iron losses in the armature winding at high frequency sinusoidal current. To demonstrate the amount of copper loss resistance ratio of ac resistance and dc resistance was calculated. This paper focuses on the ac copper loss caused by circulating current effects in electrical machines. There are two different phenomena that lead to additional ac losses. First is a skin effect and the second one is the proximity effect. A skin effect is the tendency for high-frequency current to flowon the external surface of a conductor and can be mitigated through the use smaller conductor strands. The proximity effect is the tendency for current to flow in other undesirable patterns that form localised current loops or concentrated distributions due to the presence of a magnetic field generated by nearby conductors [10, 11].
Czasopismo
Rocznik
Tom
Strony
61--66
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
- Politechnika Opolska
autor
- Politechnika Opolska
autor
- Politechnika Rzeszowska, 35- 959 Rzeszów, Al. Powstańców Warszawy 12
Bibliografia
- [1] Pyrhönen J., Jokinen T., Hrabovcová V.: Design of rotating electrical Machines, 2008 John Wiley & Sons, Ltd.
- [2] Kazimierczuk M.K.: High-frequency magnetic components, 2009 A John Wiley and Sons, Ltd.
- [3] Zheng P., Nordlund E., Thelin P., Sadarangani C.: Investigation of the winding current distribution in a 4-quadrant-transducer prototype machine, IEEE Transactions on Magnetics, Vol. 41, No. 5, May 2005, pp. 1972-1975.
- [4] Sullivan Charles R.: Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimentional or threedimentional field geometry, IEEE Transactions on Power Electronics, Vol. 16, No. 1, January 2001, pp. 142-150.
- [5] Spang M., Albach M.: Optimized winding layout for minimized proximity losses in coils with rod cores, IEEE Transactions on Magnetics, Vol. 44, No. 7, July 2008, pp. 1815-1821.
- [6] Reddy P.B, Jahns T.M., Bohn T.P.: Transposition effects on bundle proximity losses in high-speed PM machines, Power Electronics Conference, ECCE, 20-24 September 2009, pp. 1919-1926.
- [7] Reddy P.B, Jahns T.M.: Analysis of boundle losses in high speed machines, Energy Conversion Congress and Exposition, IPEC, 21-24 June 2010, pp. 2181-2188.
- [8] Reddy P.B, Jahns T.M., Bohn T.P.: Modeling and analysis of proximity losses in high-speed surface permanent magnet machines with concentrated windings, Energy Conversion Congress and Exposition, ECCE, 12-16 September 2010, pp. 996-1003.
- [9] Flux 10.3 Documentation, 2009, Cedrat Group.
- [10] Wrobel R., Mlot A., Mellor P.H.: Contribution of end-winding proximity losses to temperaturę variation in electromagnetic devices, IEEE Transactions on Industrial Electronics, vol. 58, no. 2, February 2012, pp.848-857.
- [11] Wrobel R., Mlot A., Mellor P.H.: Investigation of end-winding proximity losses in electromagnetic devices, XIX International Conference on Electrical Machines, ICEM, September 2010, Rome, pp.1-6.
- [12] Islam M.J., Khang H.V., Repo A.K., Arkkio A.: Eddy-current loss and temperature rise in the formwound stator winding of an inverter-fed cage induction motor, IEEE Transactions on Magnetics, Vol. 46, No. 8, August 2010, pp. 3413- 3416.
- [13] Ionel D.M., Popescu M., Cossar C. et al.: A general model for estimating the laminated steel losses under PWM voltage supply, IEEE Transactions on Industry Applications Vol. 46, No. 4, 2010, pp. 1389-1396.
- [14] Boglietti A., Cavagnino A., Ionel D.M., Popescu M., Staton D.A., Vaschetto S.: A general model to predict the iron losses in PWM inverter-fed induction motors, IEEE Transactions on Industry Applications, Vol. 46, No. 5, September/October 2010, pp.1882-1890.
- [15] Ionel D.M., Popescu M., Dellinger S.J., Miller T.J.E., Heideman R.J., McGlip M.I.: On the variation with flux and frequency of the core loss coefficients in electrical machines, IEEE Transactions on Industry Applications, Vol. 42, No. 3, May/June 2006, pp.658-667.
- [16] Mlot A., Korkosz M., Lukaniszyn M.: Iron loss and eddy-current loss analysis in a low-power BLDC motor with magnet segmentation, Archives of Electrical Engineering, Vol. 61(1), 2012, pp.33-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c403c637-9689-42e5-9d6c-8141c3142cdf