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ABSTRACT 

Oil and gas production water (PW) is brought to the surface 
when hydrocarbon reservoirs deep within geologic strata are 
extracted. Large volumes of PW present environmental 
challenges when released to the land surface due to high levels 
of salinity and potentially toxic elements. The effects of PW on 
soil chemical properties and plant response were investigated 
in both growth chamber and field studies. In the growth 
chamber, wheat (Triticum aestivum) and red clover (Trifolium 
repens) were grown in soil which was flooded with synthetic 
PW. The PW was enriched with several metals (Na, Cu, Cr, Pb) 
and had an acidic pH (2.5) and EC of 33,650 dSm-1. Soil 
amendments included food waste compost, composted 
biosolids, gypsum (CaSO4) and NPK 10-10-10 fertilizer. Metal 
concentrations in soil and plants were determined using flame 
atomic absorption spectrophotometry. The food waste compost  
 

provided for maximal uptake by clover of Cu, Cr and Pb 
compared to all other amendments. In several soil treatments 
both wheat and clover behaved as metal hyperaccumulators 
having high bioconcentration factors (BCF, ratio of metal 
concentrations of plant tissue to soil). Clover was the most 
efficient in accumulating Cu and Cr in shoots (BCF = 22.2 and 
30.6, respectively). Greatest metal uptake in both plant species 
occurred in either the biosolids or compost treatment. In a field 
study, plots were flooded with synthetic PW and grown to corn 
(Zea mays) and a turf mixture (Kentucky bluegrass, Poa 
pratensis and perennial ryegrass, Lolium perenne). Both corn 
and turf accumulated substantial soil Cu and Pb. Corn 
experienced significant die-off; however, turf survived the PW 
application. Turf mixtures, clover and/or wheat may be suitable 
for phytoremediation of PW-affected soil. Addition of organic 
amendments to soil may enhance metal uptake by plants.  

 
 
 

INTRODUCTION  

Oil and gas production water (PW), also known as oil field 
brine, flowback water, or formation water, is generated as a 
by-product of oil and gas production (Roach et al., 1993; 
Ramirez, 2002; Veil et al., 2004). A large operating oil field 
can produce several hundred thousand barrels of water daily 
(Collins, 1975). Approximately 21 billion barrels of produced 
water were generated in 2012 by on-shore and off-shore 
facilities (Produced Water Society, 2016), 87% of which 
originated from oil production activities (Clark and Veil, 
2009). As much as 15% to 100% of PW may be returned to 
the surface and require disposal (Wang et al., 2014; Rahm, 
2011). Produced water has historically been disposed by deep 

injection into underground injection control (UIC) class II 
wells (US EPA, 2017). Other management methods include 
placement in evaporation ponds, application to fields, 
spreading on roads, and/or treatment and reuse for future oil 
and gas operations (Wiseman, 2008; Deutch et al., 2001; 
Gilmore et al., 2014; Lee et al., 2011). The determination of 
whether PW can be used for agricultural purposes (i.e., 
irrigation, land application, stock watering) depends both on 
the quality of the produced water and on the characteristics of 
the recipient site (Colorado, 2009). In Southern California, 21 
million gallons of oil field water are recycled daily for 
irrigation of 45,000 acres of fruit trees and other crops (Cart, 
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2014). Thousands of acres in the Powder River Basin (WY) 
have been transformed to productive agricultural land using 
produced water (Aqwatec, 2015; deJoia, 2002; Adams, 2011; 
Bern et al., 2013). At some drilling sites, however, over-
application of drilling fluid waste has resulted in contaminated 
soil that could not adequately support vegetation to meet state 
regulatory requirements for well site closure (Wolf et al., 
2015). 
 Contamination of soil by PW can also occur through spills 
during drilling and fracturing processes, during transport by 
truck or through wastewater pipelines, failure of well casings, 
equipment failures and corrosion of pipes and tanks (Pichtel, 
2016). Between 2009 and 2013 over 1900 spills were 
documented in Colorado (NRDC, 2015). In 2013, spills at 550 
active wells were reported in Colorado. An analysis of 
permitted Pennsylvania wells shows a spill rate of 2% (103 of 
5,580 active wells) (NRDC, 2015). More than 640 spills from 
oil and gas wells occurred in 2015 (Soraghan and King, 
2016). 
 The composition of PW varies widely and is a function of 
geologic setting and location of the producing formation, 
depositional environment of the formation, depth and age of 
the well, and type of hydrocarbon being produced (Rice and 
Nuccio, 2000; Veil et al., 2004; Benko and Drewes, 2008). 
Common naturally-occurring constituents of concern in PW 
include organic compounds, total suspended solids (Veil et 
al., 2004; Benko and Drewes, 2008; Wang et al., 2014), 
radionuclides, salts, and metals (Kemmer, 1988; Knight et al., 
1999; Veil et al., 2004). Copper (Cu), chromium (Cr), lead 
(Pb) and other metals have been identified in PW from oil and 
gas operations (US EPA, 1982). In addition, PW can contain 
chemical additives that were used during oil production (Veil 
et al., 2004). For example, Cu may be added to breaker fluids, 
which decrease fluid viscosity, and Cr occurs in cross-linked 
gels to provide better transport of additives. Several 
components of PW, when present in high concentrations, can 
pose threats to terrestrial plants when discharged, for example, 
when used for irrigation or accidentally via pipeline rupture.  
 Soils near well spills are affected by excess salinity and 
high concentrations of sodium (Na) (Sontag and Gebeloff, 
2014; Alberta, 2001) and other metals. Salinity and metallic 
contaminants are linked with a number of adverse effects to 
plants including decreased chlorophyll content and stomatal 
conductance, decreased enzyme activity, chlorosis, reduced 
shoot and root length, inhibition of germination, and reduced 
flowering and seed production. (Sharma and Sharma, 1993; 
Panda and Patra, 2000; Hussain et al., 2013). The degree of 
toxicity depends on the properties of the contaminant and its 
concentration (Duruibe et al. 2007).  
      To sustainably remediate metallic contamination of soil, 
effective and low-cost technologies are required. 

Phytoremediation has become an attractive option for 
treatment of metal-affected soils, as it is a low-cost, solar-
driven green technology which imparts few adverse 
environmental effects (Marchiol et al. 2013). 
Phytoremediation is commonly divided into six categories. 
Phytoextraction involves the uptake of metals by plant roots 
followed by translocation to shoots (Dary et al. 2010). In 
phytostabilization, extensive plant root systems sorb soil 
contaminants, thus preventing leaching or lateral migration. In 
rhizosphere biodegradation, microorganisms residing in the 
plant root zone enhance biological degradation of 
contaminants. Phytovolatilization involves plants taking up 
water containing organic contaminants and releasing them 
into the air via the stomata. In phytodegradation, plants 
metabolize and destroy contaminants within their tissue 
(Pichtel, 2007). Hydraulic control involves the use of trees to 
control groundwater movement. 
      A range of organic materials has been evaluated as 
supplements for enhancing phytoremediation (Gholami et al. 
2012; Wang et al. 2013). Examples include animal manures, 
humified lignite (Saengwilai et al., 2017), composted food 
waste, composted biosolids and others. Inorganic compounds 
such as gypsum (CaSO4) may stabilize Na-enriched soil, 
improve aggregation, and in some cases immobilize heavy 
metals (Illera et al., 2004). The utilization of organic 
amendments has been found to improve the metal 
accumulating potential of plants, depending on plant species 
and amendment properties (Zubillaga et al. 2012; 
Wiszniewska et al. 2016). In metal-contaminated soils, 
amendments have increased plant tolerance and altered rates 
of metal accumulation (Walker et al. 2004; Chaiyarat et al. 
2011). The presence of macronutrients and micronutrients in 
organic materials stimulates plant biomass production. 
Additionally,  organic amendments improve soil aeration, 
water infiltration, and water and nutrient holding capacity, 
which increase crop yield (Paulin, 2005).   
     Many papers have addressed the effects of oil and gas 
production wastewaters on the quality of groundwater and 
surface water; however, significantly less information is 
available on the effects of PWs to soil productivity. 
Furthermore, reclamation of PW-affected soils has received 
minimal attention in the scientific literature. The present study 
investigates the influence of soil amendments (composted 
biosolids, composted food waste, calcium sulfate, NPK 
fertilizer) and of two plants, wheat (Triticum aestivum) and 
red clover (Trifolium repens), on soil chemical properties after 
contamination from PW in growth chamber experiments. 
Additionally, the potential for bioaccumulation of soil metals 
is assessed. In a field study, metal uptake by corn (Zea mays 
L.) and mixed turf species from PW was investigated.

 

 
MATERIALS AND  METHODS 
 
 
Properties of synthetic PW   
Synthetic PW was prepared using reagent grade chemicals 
(Sigma) mixed with deionized (DI) water. Salts included 
AlCl3, AlF3, Al(NO3)3, CuSO4, MgCO3, Mg(NO3)2, K-
acetate, KCl, Na-acetate, Na2CO3, and NaCl. Hydrocarbons 

included diesel fuel, ethanol, ethylene glycol, glycerol, 
hexane, 2-propanol, and toluene. Solution pH was adjusted 
dropwise using NaOH or H3PO4 (Alalade et al. (2017); 
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Maguire-Boyle and Barron (2014); Marcellus (2016); 
FracFocus (2015). 
 The pH of the PW was determined using a glass electrode 
pH meter (Accumet® model AP115, Thermo Fisher 
Scientific, Waltham MA USA) and electrical conductivity 
with an EC meter (Hanna instruments model HI 993310, 
Woonsocket, RI, USA). Total Na, Cu, Cr and Pb 
concentrations were determined via flame atomic absorption 
spectrophotometry (FAAS) (Perkin Elmer AAnalyst 200, 
Shelton, CT, USA), and K via flame atomic emission 
spectrophotometry.  
 
Characterization of soil  
Soil pH was analyzed using a glass electrode pH meter 
(Accumet® AP115) on a 1:10 mixture of soil:DI H2O and 
electrical conductivity was measured using an EC meter 
(Hanna instruments HI 993310). Total organic carbon was 
determined via the Walkley-Black method (Walkley and 
Black, 1934), and total N by the Kjeldahl method (Black, 
1965). Soil P was determined by the Bray-II method (Bray 
and Kurtz, 1945) and extractable K via flame atomic emission 
spectrophotometry (Perkin Elmer AAnalyst 2000) after 
NH4OAc extraction (Sparks, 1996). Extractable metal (K, Na, 
Cu, Cr, Pb) concentrations were analyzed after DTPA 
extraction; samples were extracted with 0.05 M diethylene 
triamine pentaacetic acid (DTPA) for 2 h on an oscillating 
shaker (120 osc./min). The suspensions were filtered through 
Whatman no. 2 filter paper and analyzed using FAAS. Soil 
particle size distribution was determined by the hydrometer 
method (Allen et al., 1974). 
 
Growth Chamber Study 
Treatments 
In the growth chamber, plastic pots containing 1 kg soil were 
packed with Glynwood silt loam (fine, illitic mesic Aquic 
Hapludalf). Soil was obtained from the surface 20 cm from 
agricultural fields in central Indiana, air-dried for 7 days, and 
sieved to pass a 2-mm mesh sieve.  
 Soil was saturated with PW and allowed to incubate at 
ambient temperatures for 7 days. The soil was subsequently 
amended with either composted municipal wastewater 
biosolids (1:20 w/w ratio), composted food waste (hereafter 
termed ‘compost’) (1:20 ratio), calcium sulfate (50 g kg-1), or 
10-10-10 NPK fertilizer (15 g kg-1). The biosolids were 
obtained from the Southwesterly Compost Facility, 
Columbus, OH. Composted food waste was prepared using a 
mixture of fruit and vegetable scrap which was composted for 
60 d. Turning was provided twice per week. Amendments 
were mixed with soil using a stainless steel rod. The 
experimental design was a randomized complete block with 
four replications.   
 The soil was cultivated with wheat (Triticum aestivum) 
and red clover (Trifolium repens). Wheat was sown at 10 
seeds per pot. Clover was sown into pots at a rate of approx. 
14 kg ha-1. Pots were kept in a growth chamber with a 16/8 h 
light/dark cycle, a day/night temperature of 22/17°C, and a 
relative humidity of 70% (Joner and Leyval, 2001). Plants 
were watered with tap water to 75% of field capacity for a 
total of 90 days.  
 After 90 days incubation, soil material was collected from 
each pot and analyzed for pH and electrical conductivity. 
Samples were extracted with 0.5 M DTPA and analyzed for 

concentrations of Na, Cu, Cr and Pb as described above. Plant 
tissue was harvested by cutting at the soil surface using a 
stainless steel Exacto™ knife.  
 
Plant tissue analysis 
Plant tissue was oven-dried at 80°C for 24 h and dry weight 
was recorded. Dried tissue was cut into small pieces with 
stainless steel scissors. One-half gram (d.w.) of plant tissue 
was transferred to an acid digestion vessel. Concentrated 
(70% Baker analyzed®) HNO3 was added and the mixture 
digested using a MARS microwave digestion apparatus. Total 
metal (Na, Cu, Cr, Pb) concentrations of the digests were 
determined using FAAS. 
 Several parameters were calculated to determine metal 
uptake and translocation by both plant species. The 
bioconcentration factor (BCF) is defined as the ratio of metal 
concentration in the shoot to the extractable metal 
concentration in rhizosphere soil (Rezvani and Zaefarian, 
2011):  
 
BCFshoot = Cshoot/Csoil   
where Cshoot is metal concentration in shoot, and Csoil is the 
metal concentration in soil. 
 
Metal uptake indicates metal concentration in plant shoots 
(Meeinkuirt et al. 2016): 
 
M uptake = Mshoot x plant dry biomass 
where M is the concentration in shoots. 
 
Field study 
Plots measuring 2 x 3 m were prepared on Glynwood soil in 
Indiana, USA. Plots received N, P and K at 140, 200 and 120 
kg ha-1, respectively. Plant treatments consisted of corn (Zea 
mays L.); mixed turf species (Kentucky bluegrass, Poa 
pratensis; and perennial ryegrass, Lolium perenne); and no 
vegetation. Plants were watered by rainfall only. Plants were 
allowed to grow for a total of 8 weeks prior to application of 
PW.   
 The synthetic PW was applied to the plots at the rate of 12 
L m-2 as a topdress. Control plots were grown to the same 
plant species on non-contaminated soil.  
     Plots were sampled four weeks after PW application. Soil 
material was collected from each plot from an upper (0-20 
cm) and a lower horizon (20-40 cm) using a stainless steel 
sampling tool. In the laboratory, soil material for each 
treatment was homogenized, air-dried, and sieved to pass a 2-
mm mesh sieve.  
 Entire plants were removed from the soil and separated 
into shoots and roots using an Exacto™ knife. In the 
laboratory, roots were washed with tap water to remove 
attached soil particles and then rinsed with DI water. 
 
Soil analysis 
Soil chemical properties (pH, extractable K, Na, Cu, Cr and 
Pb concentrations) were analyzed as described for the growth 
chamber study. 
 
Plant tissue analysis 
Plant tissue was oven-dried at 80°C for 24 h and dry weight 
was recorded. Dried plant tissue was microwave-digested and 
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tested for Na, Cu, Cr and Pb concentrations as described for 
the growth chamber study. 
 
Quality Control  
To assess analytical precision, soil standard reference material 
(NIST SRM® 2710a Montana soil) was used to determine 
accuracy and precision of the sample data. Percent recovery 
for the soil samples was in the range of 95.4–107.5%. Flame 
atomic absorption spectrophotometer detection limits were as 

follows: 0.3, 1.5, 3, 15 and 3 ugL-1 for Na, Cu, Cr, Pb and K, 
respectively. 
 
Statistical analysis 
One-way analysis of variance (ANOVA) was performed for 
comparing data among plant and soil treatments using 
SigmaStat™; least significant difference (LSD) was used for 
post-hoc comparisons (p ≤ 0.05). 

 
 
RESULTS AND DISCUSSION  
 
Properties of PW 
The synthetic PW had a pH of 2.5 and an EC of 33,650 µS/cm 
(Table 1). The pH of concentrated brines usually is less than 
7.0. Igunnu and Chen (2012) measured a pH of 4.3 and an EC 
of 4,200 µS/cm in oil field produced water. Produced water 
discharges from oil platforms in the North Sea are reported to 

have pH levels of 6-7.7, while those from gas platforms are 
more acidic (approx. 3.5-5.5) (Jacobs et al., 1992). In some 
brines with little buffering capacity, pH was as low as 2.9 
(Produced Water Society, 2016). In contrast, however, US  
 DOE (2006) noted a pH of 8.1 in PW. 

 

Table 1. Selected chemical and physical properties of synthetic produced water. (n = 3) 

Parameter Value 

pH 2.5+0.01 
EC, dS m-1 33,650+4900 
Specific gravity 1.81+0.44 
Metals, mg l-1 
    K  

 
1343.5+19.8 

    Na 2011.5+65.9 
    Cu  921.7+3.7 
    Cr  444.0+25.0 
    Pb 127.3+6.8 

  
 Concentrations of Na, Cu, Cr and Pb were 2011, 921, 444 
and 127 mg l-1 respectively (Table 1). US DOE (2006) 
measured 486 mg l-1 Na in PW, and Igunnu and Chen (2012) 
measured Na concentrations ranging from 132-97,000 mg l-1. 
The US Geological Survey Produced Waters Database 
(USGS, 2016) recorded Cu and Pb concentrations up to 75 mg 
l-1 and 8187 mg l-1, respectively. In contrast, Igunnu and Chen 
(2012) found Cu concentrations to range from < 0.02 to 1.5 
mg l-1 and Pb from 0.002 to 8.8 mg l-1. Such variations in pH 
and concentrations of other PW consitutents are expected, 
given the wide range of formulations for preparing hydraulic 
fracturing fluids as well as the varying geochemistry of 
subsurface water (Aqwatec, 2015). 
 
Growth chamber study 
 
Soil and Amendment Properties 
The pH of the Glynwood soil was 6.4 (Table 2), total C and N 
contents were 3.9 and 0.36%, respectively. Levels of 
extractable Cu, Cr and Pb (5.0, 4.9 and 3.7 mg kg-1, 
respectively) were consistent with those for non-contaminated 
soil. Soil texture was silt loam. The pH of the biosolids and 
compost were 6.8 and 7.9, respectively, and TOC levels were 

42.2 and 35.9%, respectively. Metal concentrations in both 
materials were low, with the exception of Cu in the biosolids 
(236 mg kg-1). Sodium concentrations measured 310 and 255 
mg kg-1 in the biosolids and compost, respectively. 
 
Soil properties after treatment 
In the Glynwood soil grown with wheat, pH ranged from 5.6 
in the CaSO4 treatment to 6.2 in the control (Table 3). In the 
clover-treated soils, pH values ranged from 5.5 (NPK 
treatment) to 5.9 (biosolids). The PW in this study was 
extremely acidic (pH 2.2); however, Glynwood soil is formed 
upon dolomitic limestone deposits (USDA-NRCS, 2017) 
which imparts substantial acid buffering capacity. No soil pH 
values were significantly different (p > 0.05) as a function of 
plant or soil treatment. 
 Soil EC values were lowest in the non-amended soil (7.3 
and 9.6 dS/m, respectively), and highest in the NPK (29.0 
dS/m and 35.9 dS/cm, respectively). The NPK fertilizer was 
provided as a soluble salt, which accounts for the high EC 
values.  
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Soil Na concentrations averaged 1611 and 1621 mg kg in the 
wheat and clover treatments, respectively (Table 3). No soil 

Na values were significantly different (p < 0.05) for any soil 
treatment.

 
 
Table 2.  Selected chemical and physical properties of the Glynwood soil, and biosolids and food compost amendments. 

Parameter Glynwood Biosolids Compost 

pH 6.4 6.8 7.9 
EC, µS/cm-1               1,100  4,500  3,350 
TOC*, %                        3.9  42.2 35.9 
Total N, %                   0.36 1.1 1.8 
Bray-1 P, mg kg-1       13.0 4.2 2.7 
Extractable (mg kg-1)    
    K 86.9 3480 1,500 
    Na 110.1 310 255 
    Cu 5.0 236 69.4 
    Cr 4.9 21 10.2 
    Pb 3.7 210 56.16 
Texture, %     
    Sand                      28.0 - - 
    Silt                       51.0 - - 
    Clay 21.0 - - 
*TOC= Total Organic Carbon 
 
Table 3. Selected chemical properties of soil after 90 d, growth chamber study. (n = 4) 

Crop Soil 
Treatment pH EC Na  Extractable  

Cu Cr Pb 

   dS m-1   mg kg-1  

Wheat        
 Compost 5.78+0.09a1 13.1 1636.4+43.6a 95.9+36.2a 75.20+19.9a 95.9+36.2a 
 Biosolids 5.63+0.08a 12.5 1622.9+65.7a 84.8+60.8a 53.4+22.6a 84.8+60.8a 
 CaSO4 5.58+0.07a

 22.4 1566.4+33.2a 39.3+23.1a 55.4+19.3a 39.3+23.1a 
 NPK 5.71+0.10a 29.0 1613.3+50.1a 59.1+55.0a 72.0+23.0a 59.1+55.0a 
 None 6.21+0.09a 7.3 1615.8+23.2a 25.8+4.4b 65.9+9.0a 25.8+4.4b 
        
Clover        
 Compost 5.77+0.08a 7.9 1593.2+44.2a 22.6+8.1a 61.2+11.4a 22.6+8.1a 
 Biosolids 5.93+0.11a 11.1 1632.0+64.4a 21.1+14.3a 62.2+11.8a 21.1+14.3a 
 CaSO4 5.69+0.09a 21.4 1646.2+56.6a 42.1+31.9a 63.0+28.0a 42.1+31.9b 
 NPK 5.54+0.08a 35.9 1615.6+17.7a 58.0+26.0a 55.6+19.2a 58.0+26.0b 
 None 5.88+0.10a 9.6 1618.8+56.0a 20.1+6.2b 50.3+28.2a 20.1+6.2a 
1Means followed by the same number are not significantly different at α = 0.05. 
 
 
Among all plant and soil treatments, extractable Cu 
concentration was greatest in the compost and biosolids 
treatments cultivated with wheat (95.9 and 84.8 mg kg-1, 
respectively) (Table 3). The biosolids and compost 
amendments contained 236 and 69 mg kg-1 Cu, respectively 
(Table 2). In contrast, however, low extractable Cu occurred 
in the compost and biosolids treatments cultivated to clover 
(22.6 and 21.1 mg kg-1, respectively). The differences in 
extractable Cu are attributed to differences in root properties 

of wheat, a grain crop, versus clover, a legume. Changes in 
bioavailability of soil metals often results from root-induced 
changes to soil properties (Tao et al., 2004), including metal 
binding by root exudates, detoxification of metals by 
phytochelatins, root-induced microbial activities, and root 
depletion as a consequence of plant uptake (Ernst, 1996; Koo 
et al., 2010).  
     Certain microbial processes enhance metal solubility, 
thereby increasing bioavailability, whereas other processes 
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result in immobilization, with subsequent decrease in 
bioavailability. Solubilization of metals can occur by 
autotrophic and heterotrophic mobilization mostly by the 
release of inorganic and organic acids, siderophores and other 
complexing agents, thereby accelerating redox, methylation, 
demethylation and biodegradation (Krebs et al., 1997). On the 
other hand, microbially-induced metal immobilization can 
occur by biosorption, precipitation, reduction, accumulation, 
intracellular deposition, localization and sequestration (Gadd 
et al., 2010). Soil Cu concentrations in the amended 
treatments were significantly (p < 0.05) greater than those of 
non-amended treatments.  
 Soil Cr concentrations averaged 64 mg kg-1 for the wheat 
treatment and 58 mg kg-1 for the clover treatment (Table 3). 
Typical Cr values in natural soils range from 7 to 221 mg kg-1 
(McBride, 1994). Soil Pb concentrations averaged 61 mg kg-1 
for the wheat treatment and 32.8 mg kg-1 for the clover 
treatment (Table 3). High soil Pb concentrations may be 
inhibitory to the growth of plants; an upper limit for Pb 
concentration of non-contaminated soil is suggested at 70 mg 
kg-1 (Pichtel, 2007). 

 
Metal uptake by plants 
Tissue Na content ranged from 10,850 (NPK) to 15,946 mg 
kg-1 in the wheat treatment, and from 10,683 to 15,411 mg kg-

1 in the clover (Table 4). Sodium is required by plants in only 
minute quantities and can impart toxic effects when at high 
levels (typically > 200 mg/kg) (Legg, 2017). Vymazal et al. 

(2007) found, however, that reed canarygrass (Phalaris 
arundinacea) accumulated 20,376 mg kg-1 Na.  
      Clover germination was unsuccessful in the NPK 
treatment. This may be due to the high EC in this treatment 
(35.9 dS/m; Table 3). Soil salinity imposes ion toxicity, 
nutrient (N, Ca, K, P, Fe, Zn) deficiencies, nutritional 
imbalances, osmotic stress and oxidative stress on plants 
(Shrivastava and Kumar, 2015; Ashraf, 2004). Excess salinity 
may cause adverse effects on plant growth and development at 
physiological and biochemical levels (Ashraf, 2004), and at 
the molecular level (Bano and Fatima, 2009). Salinity hinders 
seed germination; seedling growth; enzyme activity; DNA, 
RNA and protein synthesis; and mitosis (Munns, 2002; 
Munns and James, 2003). 
 Copper content of wheat ranged from 24.0 (NPK) to 189.6 
mg kg-1 (CaSO4) (p > 0.05) (Table 4), and the Cu content of 
clover ranged from 24.8 (control) to 358.4 mg kg-1 (compost). 
Copper uptake by clover was markedly higher compared with 
wheat – mean Cu content of the clover treatment was 187.6 
mg kg-1, compared with a mean value of 81.1 mg kg-1 in 
wheat (Table 4). These data correspond with the lower soil Cu 
concentrations in the clover treatment (mean 32.8 mg kg-1) 
versus that for wheat (mean 51.0 mg kg-1) (Table 3). Metal 
concentrations in plants vary markedly by species (Huang and 
Cunningham, 1996). Soil pH influences metal uptake, i.e., 
acid conditions will favor metal solubilization. Soil pH in the 
clover and wheat treatments were both slightly acidic (5.7 and 
5.8, respectively). 

 
Table 4.  Metal contents of plants grown on Glynwood soil after 90 d, growth chamber study. (n = 4) 

Crop      Soil 
Treatment 

Na      Cu      Cr     Pb 

  ----------------------------------------- mg kg-1 ---------------------------------------------- 

Wheat      
 Compost 14924.0+1485.6a 45.6+29.5a 1289.6+118.0a 679.2+962.4a 
 Biosolids 15946.4+2365.1a 92.8+37.0a 928.0+351.0a 836.8+667.3a 
 CaSO4 14384.8+3516.8a 189.6+131.4a 1308.8+374.5a 197.6+283.2a 
 NPK 10850.4+633.6b 24.0+3.6a   816.8+344.6a 760.0+1043.9a 
 None 12493.6+3555.4b 53.6+52.8a 1106.4+106.8a 144.0+209.5a 
      
Clover      
 Compost        15411.2+2766.7a 358.4+332.5a 1297.6+331.6a 1372.8+1038.5a 
 Biosolids   10674.4+3869.7b 100.8+77.5a 1147.2+278.7a 260.0+537.8a 
 CaSO4   14356.8+2540.5a 266.4+180.3a 1252.0+239.8a 1079.2+877.2a 
 NPK                *          *            *            * 
 None 10683.2+5996.1b 24.8+26.3a 1044.8+254.9a 451.2+385.0a 

 

*No plants survived in this treatment. Means followed by the same number are not significantly different at α = 0.05. 

Nan et al. (2002) found that wheat was capable of growing on 
soil containing up to 364 mg kg-1 Cu. Rorison (1980) 
suggested the involvement of a Cu complexing mechanism 
during Cu detoxification in certain grasses. In copper-
contaminated soil in P.R. China, leaf Cu concentration in 
Rumex acetosa, a perennial grass, ranged from 340 to 1102 
mg/kg; Commelina communis contained from 19 to 587 

mg/kg, and Elsholtzia haichowensis contained from 18 to 391 
mg/kg Cu (Tang et al., 1999).  
 Chromium uptake by wheat was substantial; values 
ranged from 816.8 (NPK) to 1309 mg kg-1 (CaSO4) with a 
mean value of 1090 mg kg-1 (Table 4). In the presence of the 
compost, CaSO4, and control treatments, this species behaved 
as a hyperaccumulator. The threshold criterion for metal 
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hyperaccumulators established by Baker (1981) is a tissue metal concentration > 1,000 mg kg-1 in shoots. Likewise, 
clover had hyperaccumulator characteristics: Cr content 
ranged from 1044.8 (control) to 1298 mg kg-1 (compost) with 
an overall mean of 1185.4 mg kg-1. There were no significant 
differences in soil Cr concentrations among the plant and soil 
treatments (p > 0.05). 
 In a study of metal uptake by grasses (Pichtel and Salt, 
1998), Agrostis capillaris took up 995 mg/kg (dw) and 
ryegrass (Lolium perenne) tissue accumulated 359 mg/kg Cr. 
Gough and Severson (1976) measured 500 mg/kg Cr in 
sagebrush from the vicinity of a P fertilizer factory. 
Leptospermum scoparium leaves were found to contain 2470 
mg/kg Cr (ash dw) grown on a serpentine soil (Lyon et al., 
1971), and Sutera fodina leaves contained 48,000 mg/kg Cr 
(ash dw) (Wild, 1974).  These data demonstrate that several 
varied plant species are capable of tolerating Cr-rich soil and 
accumulating Cr without toxic effects. 
 The Cr content in plants is controlled mainly by the 
soluble Cr content of the soil (Kabata-Pendias, 2011), which 
is presumably a function of soil Cr speciation. The Cr(VI) 
form is highly soluble and plant-available compared to Cr(III) 
(Shahid et al., 2017). Chromium redox speciation was not 
conducted in this study, however. 
 Lead content of wheat ranged from 144.0 (control) to 
836.8 mg kg-1 (biosolids) with an overall mean value of 523.5 
mg kg-1 (Table 4). Lead content of clover ranged from 260 
(biosolids) to 1372 mg kg-1 (compost) with a mean value of 
790.8 mg kg-1. 
     Tissue concentrations of Pb exceeded levels considered 
phytotoxic (> 5 mg kg-1) by Markert (1992).  However, Nan et 
al. (2002) found that wheat was able to grow on soil 
containing as much as 700 mg kg-1 Pb. In a study by Pichtel et 
al. (2000), Pb content in plants growing at a contaminated site 
were as high as 1467 mg kg-1. Pichtel and Salt (1998) found 
that P. pratense, A. capillaris and L. perenne accumulated 
141, 122 and 120 mg/kg, respectively, of Pb. Cannon and 
Bowles (1962) reported that certain grasses survived with 
tissue Pb concentrations as high as 3000 mg/kg dw. Calluna 
vulgaris L. Hull (common heather) and A. vinealis Schreber, 
contained 327 and 2932 mg/kg dw, respectively, in shoot 
tissue.  

 The compost treatment clearly enhanced Pb uptake by 
clover (1372.8 mg kg-1); in contrast, Pb content of clover in 
the biosolids treatment was markedly lower, i.e., 260 mg kg-1. 
The difference in uptake is likely due to the fact that the 
compost was relatively young and contained substantial 
dissolved organic carbon (DOC) compounds. The biosolids, 
however, had been aged for over one year; as a result, the 
organic fraction is likely to be complex and relatively 
immobile in soil. Organic amendments may mobilize metals if 
they contain high DOC contents which form soluble 
complexes with metals in the soil solution (Khokhotva and 
Waara, 2010; Venegas et al., 2016). In a study by Houben et 
al. (2012), amendments with high dissolved organic carbon 
(DOC) content provoked an initial increase in Pb leaching; 
later, changes in Pb leaching corresponded with a decline in 
DOC content.  
 There were no significant differences in soil Pb 
concentrations among the plant and soil treatments (p > 0.05). 
 Based on the above data a number of green plants may 
possess the potential for phytoextraction of heavy metals from 
PW-contaminated soil. 
 
Bioconcentration factor and metal uptake 
The bioconcentration factor (BCF) reflects the progressive 
accumulation of metal from soil into a specific plant part 
(Branquinho et al., 2007). The process of phytoextraction 
generally requires the translocation of heavy metals to easily 
harvestable plant parts, i.e. shoots. By observing the BCF, we 
can compare the ability of different plants in taking up metals 
from soil and translocating them to shoots. Tolerant plants 
tend to restrict soil-to-root transfers and therefore accumulate 
little in biomass, while accumulators actively take up and 
translocate metals into above-ground biomass. Plants 
exhibiting BCF values less than one are unsuitable for 
phytoextraction (Fitz and Wenzel, 2002).  
     Wheat shoots had BCF values for Cu ranging from 1.0 
(biosolids and CaSO4) to 2.9 (compost); for Cr ranging from 
13.1 (NPK) to 24.2 (CaSO4); and for Pb from 0.25 (control) to 
1.6 (NPK) (Table 5).  
 
 

Table 5. Bioconcentration factors for Cu, Cr and Pb in wheat and clover shoots, growth chamber study.

  Na Cu Cr Pb 

 
Wheat 

     

 Compost 9.1 2.8 18.5 1.32 
 Biosolids 10.7 1.0 21.2 1.35 
 CaSO4 9.0 1.0 24.2 0.40 
 NPK 1.2 5.9 13.1 1.64 
 Control 7.7 1.2 17.1 0.25 
Clover      
 Compost 9.7 22.2 21.0 2.7 
 Biosolids 7.6 9.6 19.2 1.1 
 CaSO4 8.2 9.4 24.5 2.4 
 NPK - - - - 
 Control 6.6 1.5 30.6 1.3 
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 Greatest metal uptake and accumulation in both plant 
species was either in the biosolids or compost treatment 
(Table 6). Wheat shoots had uptake values for Na ranging 
from 1905 (NPK) to 34,095 µg (compost); Cu from 5.1 
(CaSO4) to 169.8 µg (compost); Cr from 214.8 (control) to 
2313.7 µg (biosolids); and Pb from 30.2 (NPK) to 1174 µg 
(compost).  
 Clover shoots had uptake values for Na ranging from 413 
(control) to 11,767 µg (compost); Cu from 1.7 (control) to 

62.4 µg (compost); Cr from 37.2 (control) to 816.8 µg 
(biosolids); and Pb from 4.3 (control) to 518.7 µg (compost).   
 The ability of wheat shoots to take up soil Pb was 
considerable (Table 6) – Pb concentrations in the compost and 
biosolids treatments were 1174 and 1051 µg, respectively.   
This contrasts with Pb removal in the non-amended treatment, 
i.e., 32 µg.  
 The above data demonstrate the capability of wheat and/or 
clover, in combination with organic amendments, for possible 
phytotreatment of metal-enriched PW.

  
 
Table 6. Removal of Cu, Cr and Pb in wheat and clover shoots, growth chamber study. (n = 4) 
 

 
Plant 

 
Soil 

Treatment 

 
Na 

 
   Cu 

 
      Cr 

 
     Pb 

    ------------------------------------------------µg-----------------------------------------------------------      - 
Wheat      
 Biosolids 26342.1+12044.0 83.0+72.3 2313.7+1135.5    1051.4+1489.3    
 Compost 34095.6+13367.4    169.8+76.7 1969.7+947.2      1174.9+1335.4    
 NPK 1905.5+1352.4 26.6+24.7 165.7+135.6 30.2+41.5 
 CaSO4 2993.7+2317.8         5.1+7.7 1401.5+1134.7    356.6+543.7 
 None  2694.0+2564.5       11.4+13.8 214.8+165.3        32.2+52.0              
      
Clover      
 Biosolids 9457.5+8130.0 34.2+32.1 816.8+704.5 129.7+282.5 
 Compost 11767.7+7740.6       62.4+46.7 744.9+631.7         518.7+917.9 
 NPK 1111.2+801.7 18.3+19.4 105.4+88.0 14.2+22.9 
 CaSO4 1219.7+920.9 1.9+2.9 584.9+493.4         194.2+301.2 
 None  413+101.2 1.7+1.5 37.2+7.6 4.3+6.3 

      

Field Study 
 
Soil properties
The pH of the PW-contaminated soil ranged from 4.5 (upper 
horizon, corn) to 6.8 (lower horizon, turf) (Table 7). The pH of 
the non-contaminated soil ranged from 6.4-7.3. The PW was 
highly acidic (pH 2.2; Table 1), which contributed to pH 
decline in the upper horizon of the PW-contaminated soil. 
 Metal concentrations in the PW-treated soil were 
substantially higher than those in the non-contaminated soil 
(Table 7) (p < 0.05). Highest soil Na occurred in the corn 
treatment upper and lower horizons (1688 and 1580.8 mg kg-1, 
respectively). Lowest soil Na concentrations (102 and 108.2 
mg kg-1) were in the upper and lower horizons, respectively, of 
the non-vegetated plots. The synthetic PW was highly sodic 
(Na concentration = 2011.5 mg l-1; Table 1).  
 Sodium from PW application was clearly mobile in the 
profile (Table 7) – in the corn treatment, Na concentrations in 
the upper and lower horizons were 1688 and 1580 mg kg-1, 
respectively. The same effect was noted in the turf treatment, 
where Na concentrations in the upper and lower horizons were 
1521 and 1392 mg kg-1, respectively. Sodium is readily 
leached from the profile (FAO, 2017).  
In the PW-treated plots grown to corn, soil Cu concentrations 
showed a distinct distribution by depth (Table 7): the upper 
horizon contained 323 mg kg-1 while the lower horizon 
contained 83.4 mg kg-1 (p < 0.05). The Glynwood soil in this 

experiment contained 3.9% TOC (Table 2), which provides a 
moderate sorption capacity for metals. Copper forms strong 
bonds with organic matter (Zhou and Wong, 2001); humic 
acids and other organic molecules interact readily with Cu 
(Klucakova, 2012).  
 
Plant Response and Metal Accumulation 
Corn plants experienced a 75% die-off within 7-10 days of PW 
application. The effect is likely due to the high salinity and Na 
concentration of the introduced PW. Toxicity symptoms 
included interveinal chlorosis; burning on leaf surfaces and 
margins was also evident. Leaf burn became more severe until 
defoliation and plant death occurred. These are common 
symptoms of Na toxicity (Stone and Downer, 2013). Sodium is 
required by plants in only minute quantities and can impart 
toxic effects when at high levels (typically > 200 mg/kg) 
(Legg, 2017). Sodium concentration in the corn tissue was 
2220 mg kg-1 (Table 8). Excessive accumulation of Na in cell 
walls can lead to osmotic stress and cell death (Tabur and 
Demir, 2010). Chromium concentrations were low (< 14 mg 
kg-1) for all treatments. Likewise, soil Pb 
 concentrations were not excessive. 
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Table 7.  Metal concentrations of field soil, upper and lower horizons. (n = 4) 
 

          
Plant 

treatment 
Horizon PW pH EC Na K Cu Cr           Pb 

    dS m-1    -----------------------------------------mg kg-1------------------------------------------- 
Corn          
 Upper Y 4.51+0.28a 17.9+6.2 1688.3+78.1a 111.8+31.5a 323.2+101.9a 6.9+10.6a 75.8+108.0a 
 Lower Y 6.34+0.65b 6.6+0.1 1580.8+150.8a 54.2+22.9a 83.4+69.1a 7.7+15.4a 133.6+176.0

 
          
 Upper  N 6.68+0.01b 14.7+0.1 69.9+27.4b 51.8+8.2a 2.8+0.6b 13.8+15.0 BDL1, b 
 Lower N 6.1+0.22b 9.7+4.1 39.7+46.4b 20.2+4.8ab 2.6+0.3b 2.6+3.7a BDLb 
          
Turf           
 Upper Y 6.62+0.20b 1.5+0.6 1521.8+117.7a 30.3+5.1a 301.0+102.1b 13.9+24.0 254.4+198.8 
 Lower Y 6.82+0.34b 0.9+0.2 1392.2+75.2a 8.0+0.4b 3.1+1.0b 7.5+12.6a 276.5+228.7

 
          
 Upper N 7.27+0.01b 2.3+0.1 154.4+14.1b 53.8+33.5a 1.8+0.8b 8.9+12.6a BDLb  
 Lower N 6.84+0.01b 2.1+0.1 180.6+14.4b 26.0+12.9ab 1.8+0.8b 4.9+6.5a BDLb 
          
None          
 Upper N 6.4+0.01b 6.7+7.6 102.0+91.6b 51.8+8.2a   2.8+0.6b 13.8+15.0a BDLb 
 Lower N 6.5+0.50b 2.2+0.8 108.2+112.9b 20.2+4.8ab 2.6+0.03b 2.6+3.7a BDLb 

 

Means followed by the same number are not significantly different at α = 0.05. 

   
 Excess Na+ is frequently assumed to be largely responsible 
for reductions in growth and yield under saline conditions (Chi 
Lin and Huei Kao, 2001; Tsai et al., 2004; Hong et al., 2009). 
Soil Na concentration in the upper horizon of the corn 
treatment was 1688.3 mg kg-1 (Table 7). In a greenhouse study 
Miller et al. (1980) evaluated the effects of PW components on 
plant growth and found that NaOH and other compounds 
reduced yields of sweet corn (Zea mays L. var. succharata) 
and/or green beans (Phaseolus vulgaris L.). Six drilling fluids 
reduced yields of green beans and sweet corn when added to 
soil (Miller and Pesaran, 1980); high levels of soluble salts or 
high percentage exchangeable Na+ were considered to be the 
main causes of reduced growth. Adams (2011) reported severe 
acute and chronic toxicity of mixed hardwood trees and ground 
vegetation (Vaccinium L., Smilax rotundifolia L., and Kalmia 
latifolia L.) that resulted in 56% vegetation mortality after two 
years of land application of hydraulic fracturing fluid. Soil Na+ 
and Cl− concentrations increased by approximately 50-fold as a 
result of land application of the fluids. 
     Lead accumulation by corn may also have imparted toxic 
effects to both plant treatments. Lead content in corn and turf 
tissue was 1201 and 1985 mg kg-1, respectively (Table 8). Lead 
is known to induce a broad range of toxic effects to organisms, 
including those that are morphological, physiological, and 
biochemical in origin. Lead impairs plant growth, root 
elongation, seed germination, seedling development, 
transpiration, chlorophyll production, lamellar organization in 
the chloroplast, and cell division (Pourrut et al., 2011). 
Huang and Cunningham (1996) measured Pb uptake in corn 
shoots as high as 375 mg kg-1 when grown in nutrient solution. 
Bricker et al. (2001) measured 2435 mg kg-1 Pb in corn shoots 
grown on contaminated soil. 
 The turf mixture survived the shock loading of PW. 
Approximately 50% of plants in the PW-treated plots 
experienced minor leaf burn and chlorosis; however, this effect 

was only temporary. Sodium and chloride may be directly 
toxic and cause characteristic leaf burn in susceptible species 
(Bernstein, 1965; Bernstein and Hayward, 1958). Sodium 
concentration in turf tissue was 3125 mg kg-1 (Table 8). 
Vymazal et al. (2007) found that reed canarygrass (Phalaris 
arundinacea) accumulated 20,376 mg kg-1 Na. 
     Lead content of the turf tissue was substantial – 1985 mg 
kg-1 was measured (Table 8). In a study by Pichtel et al. 
(2000), Pb content in plants at a contaminated site were as high 
as 1467 mg kg-1. Cannon and Bowles (1962) reported that 
certain grasses survived with tissue Pb concentrations as high 
as 3000 mg/kg dw. Pichtel and Salt (1998) measured 141 mg 
kg-1 Pb in Timothy grass (Phleum pratense). In a greenhouse 
study ryegrass (Lolium perenne L.) was grown in soil 
containing synthetic hydraulic fracturing fluids (Nelson et al., 
1983). The fluids increased soil EC and concentrations of total 
and extractable Cu, Pb, and other metals. Ryegrass yields may 
 have been reduced by high soil Zn and EC levels. 
 
Soil remediation 
Remediation practices on PW-contaminated soil often tend to 
be straightforward (Pichtel, 2016).  In-situ remediation 
involves: (1) removal of salts via leaching with irrigation or 
natural precipitation; (2) replacement of exchangeable Na+ 
with Ca2+; and (3) removal or immobilization of metals. 
Simple soil dilution may relieve salinity and sodicity problems 
following release of PWs. In a study by Wolf et al. (2015), 
where PWs occurred primarily at the soil surface, mixing of 
the less-contaminated deeper soil with surface soil resulted in 
dilution of contaminants. Addition of inexpensive amendments 
is often successful in treating soil salinity and sodicity 
problems. Both inorganic amendments (e.g., CaSO4) 
(Anderson, 2015) and organic materials (de Jong, 1979) have 
proven successful.  
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Table 8.  Metal concentrations in corn and turf tissue, field study. 

Plant PW Na K  Cu Cr  Pb 

 

mg kg-1 

Corn Y 2220+1018.6a 9765.3+4272.6a 1294+1745.1a 104.0+180.1a 1201.3+766.7a 

 N 788.0+181.0b 5080.0+1216.2a 37.2+35.1b 68.0+84.9a 28.0+5.7b 

Turf  Y 3125.3+4370.7a 21155.3+13714.9a 197.3+245.0a 156.7+245.8a 1985.3+2216.0a 

 N 444.0+141.3b 7712.0+3248.1b 18.0+4.0b 43.0+31.6a 90.0+68.2b 

Means followed by the same number are not significantly different at α = 0.05. 

 
 Phytoremediation is a cost-effective, low-technology 
process defined as the engineered use of green plants 
including vegetable crops, grasses and even annual weeds to 
extract, accumulate and/or detoxify environmental 
contaminants (Prasad, 2004; Alkorta et al., 2004; Garbisu et 
al., 2002). Phytoextraction involves the use of accumulating 
plants to transport metals from soil to concentrate them into 
roots and above-ground shoots. In certain cases contaminants 
can be concentrated thousands of times higher in the plant 
than in the soil (Pichtel, 2016). Following harvest of the 
extracting crop, the metal-rich plant biomass can ashed to 
reduce its volume, and the residue processed as an ‘ore’ to 
recover the contaminant metals.  
     Phytoremediation is useful for soils contaminated with 
metals to shallow depths. This technology can work well in 
low-permeability soils, where many technologies have a low 
success rate. It can also be used in combination with 
conventional cleanup technologies (e.g., ‘pump and treat’ of 
groundwater). Phytoremediation can be an alternative to 
harsher remediation technologies such as soil flushing 
(Pichtel, 2007).  
     In the clover treatment, the food waste compost provided 
for maximal uptake of Cu, Cr and Pb compared to all other 
treatments. In the field study, both corn and turf accumulated 
substantial quantities of soil Cu and Pb. Considering its 
resilience to toxic soil conditions, mixed turf may be effective 
for phytoremediation of PW-affected soil. The utilization of 
organic amendments has been found to improve the metal 
accumulating potential of plants, depending on species and 
amendment properties (Zubillaga et al. 2012; Wiszniewska et 
al. 2016). Several organic materials have been evaluated as 

supplements for phytoremediation (Gholami et al. 2012; 
Wang et al. 2013). In metal-contaminated soils, amendments 
have increased plant tolerance, altered rates of metal 
accumulation (Walker et al. 2004; Chaiyarat et al. 2011), and 
stimulated biomass production.  
 
 
CONCLUSIONS 
 
In growth chamber and field studies, several plant species 
were capable of tolerating the application of synthetic oil and 
gas production water. Furthermore, several species 
accumulated substantial quantities of metals from PW-
affected soil. In the growth chamber, clover was the most 
efficient in accumulating Cu and Cr in shoots. Plant uptake of 
metals was enhanced by application of organic wastes, 
particularly biosolids and food waste compost, to soil.  
 The turf mixture (Kentucky bluegrass and perennial 
ryegrass) is considered a practical candidate for remediation 
of PW-affected soil due to robust biomass production over a 
short period, good adaptation to a wide range of soil types, 
and tolerance to stressed environments. By virtue of these 
qualities, this species mix is recommended for remediation of 
PW-contaminated soil. The results of this study demonstrate 
that specific crop and amendment combinations can 
significantly affect the efficiency of reclamation strategies of 
soils contaminated by oil and gas production water. The 
reported study may be of practical value to oil and gas 
production industries which generate large quantities of 
contaminated drilling wastewater. 
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