PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the seasonality of passengers in railway transport based on time series for proper railway development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Planning the frequency of rail services is closely related to forecasting the number of passengers and is part of the comprehensive analysis of railway systems. Most of the research presented in the literature focuses only on selected areas of this system (e.g. urban agglomerations, urban underground transport, transfer nodes), without presenting a comprehensive evaluation that would provide full knowledge and diagnostics of this mode of transport (i.e. railway transport). Therefore, this article presents methods for modelling passenger flow in rail traffic at a national level (using the example of Poland). Time series models were used to forecast the number of passengers in rail transport. The error, trend, and seasonality (ETS) exponential smoothing model and the model belonging to the ARMA class were used. An adequate model was selected, allowing future values to be forecast. The autoregressive integrated moving average (ARIMA) model follows the tested series better than the ETS model and is characterised by the lowest values of forecast errors in relation to the test set. The forecast based on the ARIMA model is characterised by a better detection of the trends and seasonality of the series. The results of the present study are considered to form the basis for solving potential rail traffic problems, which depend on the volume of passenger traffic, at the central level. The methods presented can also be implemented in other systems with similar characteristics, which affects the usability of the presented solutions.
Czasopismo
Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Military University of Technology; gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology; gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Andersson, M. & Brundell-Freij, K. & Eliasson, J. Validation of aggregate reference forecasts for passenger transport. Transportation Research Part A: Policy and Practice. 2017. Vol. 96. P. 101-118.
  • 2. Banerjee, N. & Morton, A. & Akartunali, K. Passenger demand forecasting in scheduled transportation. European Journal of Operational Research. 2020. Vol. 286. No. 3. P. 797-810.
  • 3. Borucka, A. Logistic regression in modeling and assessment of transport services. Open Engineering. 2020. Vol. 10(1). P. 26-34.
  • 4. Borucka, A. & Wiśniowski, P. & Mazurkiewicz, D. & Świderski, A. Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement. 2021. Vol. 174. No. 108998.
  • 5. Box, G.E.P & Cox, D.R. An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological). 1964. Vol. 26(2). P. 211-243.
  • 6. Brumercikova, E. & Sperka, A. Problems of access to services at railway stations in freight transport in the Slovak Republic. Sustainability. 2020. Vol. 12(19). No. 8018.
  • 7. Dedík, M. & Gašparík, J. & Záhumenská, Z. Quality assessment in the logistics of rail passenger transport. In: MATEC Web of Conferences. EDP Sciences. 2017. No. 00009. P. 1-7.
  • 8. Eboli, L. & Mazzulla, G. Relationships between rail passengers’ satisfaction and service quality: a framework for identifying key service factors. Public Transport. 2015. Vol. 7(2). P. 185-201.
  • 9. Gao, H. & et al. Forecast of passenger flow under the interruption of urban rail transit operation. In: International Conference on Electrical and Information Technologies for Rail Transportation. Springer, Singapore. 2019. P. 283-291.
  • 10. Hai, Y. & Lam, W.H.K. Optimal road tolls under conditions of queueing and congestion. Transportation Research, Part A: Policy and Practice. 1996. Vol. 30 (5). P. 319-332.
  • 11. Hassannayebi, E. & et al. Train schedule optimization in a high-speed railway system using a hybrid simulation and meta-model approach. Computers & Industrial Engineering. 2019. Vol. 138. No. 106110.
  • 12. Heidary, R. & Esmaeili, M. & Gharouni Nik, M. Effects of train operational parameters on ground-borne vibrations induced by twin metro tunnels. International Journal of Rail Transportation. 2021. Vol. 9(2). P. 144-156.
  • 13. Hou, T. & Guo, Yang-Yang & Niu, Hong-Xia. Research on speed control of high-speed train based on multi-point model. Archives of transport. 2019. Vol. 50. No. 2. P. 35-46.
  • 14. Hyndman, R. & et al. Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media. 2008.
  • 15. Jasiulewicz-Kaczmarek, M. & Żywica, P. & Gola, A. Fuzzy set theory driven maintenance sustainability performance assessment model: A multiple criteria approach. Journal of Intelligent Manufacturing. 2021. Vol. 32. P. 1497-1515.
  • 16. Kang, R. & et al. Intelligent forecasting of automatic train protection system failure rate in China High-speed Railway. Eksploatacja i Niezawodność. 2019. Vol. 21(4). P. 567-576.
  • 17. Kim, K. & Kim, J. The impact of high-speed railways on unequal accessibility based on ticket prices in Korea. Sustainability. 2020. Vol. 12(16). No. 6302.
  • 18. Konowrocki, R. & Chojnacki, A. Analysis of rail vehicles’ operational reliability in the aspect of safety against derailment based on various methods of determining the assessment criterion. Eksploatacja i Niezawodnosc. 2020. Vol. 22(1). P. 73-85.
  • 19. Kosicka, E. & Kozłowski, E. & Mazurkiewicz, D. Intelligent systems of forecasting the failure of machinery park and supporting fulfilment of orders of spare parts. In: International Conference on Intelligent Systems in Production Engineering and Maintenance. Springer, Cham. 2017. P. 54-63.
  • 20. Kozłowski, E. & et al. Machining sensor data management for operation-level predictive model. Expert Systems with Applications. 2020. Vol. 159. No. 113600.
  • 21. LI, R. & Rushton, Lee & Jones, M. Peak spreading forecast in urban rail transit demand. In: Proc. Australian Transp. Res. Forum (ATRF). 2016. P. 1-15.
  • 22. Lubis, H.A. & Pantas, V.B. & Farda, M. Demand forecast of Jakarta-Surabaya high speed rail based on stated preference method. International Journal of Technology. 2019. Vol. 10(2). P. 405-416.
  • 23. Lyons, G. & et al. Comparing rail passengers’ travel time use in Great Britain between 2004 and 2010. Mobilities. 2013. Vol. 8(4). P. 560-579.
  • 24. Obsie, A. & Woldeamanuel, M. & Woldetensae, B. Service quality of addis ababa light rail transit: passengers’ views and perspectives. Urban Rail Transit. 2020. Vol. 6(4). P. 231-243.
  • 25. Raport Urzędu Transportu Kolejowego „Statystyka Przewozów Pasażerskich”. [In Polish: Report of the Railway Transport Office "Passenger Transport Statistics"].
  • 26. Tang, Q. & Yang, M. & Yang, Y. ST-LSTM: A deep learning approach combined spatio-temporal features for short-term forecast in rail transit. Journal of Advanced Transportation. 2019. Article ID 8392592.
  • 27. Xu, R. & Wang, F. & Zhou, F. Train stop schedule plan optimization of high-speed railway based on time-segmented passenger flow demand. In: ICTE 2019. Reston, VA: American Society of Civil Engineers. 2020. P. 899-906.
  • 28. Zhelieznov, K.I. & et al. The revised method for calculating of the optimal train control mode. Archives of Transport. 2019. Vol. 51. No. 3. P. 21-34.
  • 29. Zheng, Y. & et al. Risk theory-based safety evaluation of passengers in rail transit station. In: International Conference on Electrical and Information Technologies for Rail Transportation. Springer, Singapore. 2017. P. 725-734.
  • 30. Zhou, W. & You, X. & Fan, W. A mixed integer linear programming method for simultaneous multi-periodic train timetabling and routing on a high-speed rail network. Sustainability. 2020. Vol. 12(3). P. 1131.
  • 31. Zhu, T. & et al. Rail vehicle crashworthiness based on collision energy management: an overview. International Journal of Rail Transportation. 2021. Vol. 9(2). P. 101-131.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3fbe1a1-737e-4f9f-841d-b62ff4407733
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.