PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preservation properties of stochastic orders by transformation to Harris family

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stochastic comparisons of lifetime characteristics of reliability systems and their components are of common use in lifetime analysis. In this paper, using Harris family distributions, we compare lifetimes of two series systems with random number of components, with respect to several types of stochastic orders. Our results happen to enfold several previous findings in this connection. We shall also show that several stochastic orders and ageing characteristics, such as IHRA, DHRA, NBU, and NWU, are inherited by transformation to Harris family. Finally, some refinements are made concerning related existing results in the literature.
Rocznik
Strony
441--458
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
  • Department of Statistics, University of Isfahan, Isfahan, Iran
  • Department of Statistics, University of Isfahan, Isfahan, Iran
Bibliografia
  • [1] S. Abbasi, M. H. Alamatsaz, and E. Cramer, Preservation properties of stochastic orderings by transformation to Harris family with different tilt parameters, ALEA Lat. Am. J. Probab. Math. Stat. 13 (1) (2016), pp. 465-479.
  • [2] A. Abouammoh and E. El -Neweihi, Closure of the NBUE and DMRL classes under formation of parallel systems, Statist. Probab. Lett. 4 (5) (1986), pp. 223-225.
  • [3] M. Aghababaei Jazi and M. H. Alamatsaz, Ordering comparison of logarithmic series random variables with their mixtures, Comm. Statist. Theory Methods 39 (18) (2010), pp. 3252-3263.
  • [4] M. Aghababaei Jazi, M. H. Alamatsaz, and S. Abbasi, A unified approach to ordering comparison of GPS distributions with their mixtures, Comm. Statist. Theory Methods 40 (14) (2011), pp. 2591-2604.
  • [5] I. A. Ahmad and A. R. Mugdadi, Further moments inequalities of life distributions with hypothesis testing applications: The IFRA, NBUC and DMRL classes, J. Statist. Plann. Inference 120 (1-2) (2004), pp. 1-12.
  • [6] M. H. Alamatsaz and S. Abbasi, Ordering comparison of negative binomial random variables with their mixtures, Statist. Probab. Lett. 78 (14) (2008), pp. 2234-2239.
  • [7] R. A. Al-Jarallah, M. E. Ghitany, and R. C. Gupta, A proportional hazard Marshall-Olkin extended family of distributions and its application to Gompertz distribution, Comm. Statist. Theory Methods 43 (20) (2014), pp. 4428-4443.
  • [8] E. A. A. Aly and L. Benkherouf, A new family of distributions based on probabilisty generating functions, Sankhya B 73 (1) (2011), pp. 70-80.
  • [9] B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer, Berlin 1987.
  • [10] J. Bartoszewicz and M. Skolimowska, Preservation of classes of life distributions and stochastic orders under weighting, Statist. Probab. Lett. 76 (6) (2006), pp. 587-596.
  • [11] A. Batsidis and A. J. Lemonte, On the Harris extended family of distributions, Statistics 49 (6) (2015), pp. 1400-1421.
  • [12] F. Belzunce, J. M. Ruiz, and M. C. Ruiz, On preservation of some shifted and proportional orders by systems, Statist. Probab. Lett. 60 (2) (2002), pp. 141-154.
  • [13] M. Benduch-Frąszczak, Some properties of the proportional odds model, Appl. Math. (Warsaw) 37 (2) (2010), pp. 247-256.
  • [14] P. Błażej, Preservation of classes of life distributions under weighting with a general weight function, Statist. Probab. Lett. 78 (17) (2008), pp. 3056-3061.
  • [15] D. G. Clayton, Some odds ratio statistics for the analysis of ordered categorical data, Biometrika 61 (1974), pp. 525-531.
  • [16] M. E. Ghitany and S. Kotz, Reliability properties of extended linear failure-rate distributions, Probab. Engrg. Inform. Sci. 21 (3) (2007), pp. 441-450.
  • [17] W. Gui, Marshall-Olkin extended log-logistic distribution and its application in minification processes, Appl. Math. Sci. (Ruse) 7 (77-80) (2013), pp. 3947-3961.
  • [18] R. C. Gupta and S. N. U. A. Kirmani, The role of weighted distributions in stochastic modeling, Comm. Statist. Theory Methods 19 (9) (1990), pp. 3147-3162.
  • [19] R. C. Gupta, S. Lvin, and C. Peng, Estimating turning points of the failure rate of the extended Weibull distribution, Comput. Statist. Data Anal. 54 (4) (2010), pp. 924-934.
  • [20] R. C. Gupta and C. Peng, Estimating reliability in proportional odds ratio models, Comput. Statist. Data Anal. 53 (4) (2009), pp. 1495-1510.
  • [21] T. E. Harris, Branching processes, Ann. Math. Statist. 19 (1948), pp. 474-494.
  • [22] J. Jarrahiferiz, G. R. Mohtashami Borzadaran, and A. H. Rezaei Roknabadi, Some properties and applications of shifted proportional stochastic orders, İstatistik 6 (2) (2013), pp. 80-91.
  • [23] S. N. U. A. Kirmani and R. C. Gupta, On the proportional odds model in survival analysis, Ann. Inst. Statist. Math. 53 (2) (2001), pp. 203-216.
  • [24] S. S. Maiti and M. Dey, Tilted normal distribution and its survival properties, J. Data Sci. 10 (2) (2012), pp. 225-240.
  • [25] A. W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (3) (1997), pp. 641-652.
  • [26] A. W. Marshall and I. Olkin, Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families, Springer, New York 2007.
  • [27] N. Misra, N. Gupta, and I. D. Dhariyal, Preservation of some aging properties and stochastic orders by weighted distributions, Comm. Statist. Theory Methods 37 (3-5) (2008), pp. 627-644.
  • [28] A. Müller and D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley, Chichester 2002.
  • [29] A. K. Nanda and S. Das, Stochastic orders of the Marshall-Olkin extended distribution, Statist. Probab. Lett. 82 (2) (2012), pp. 295-302.
  • [30] H. M. Ramos Romero and M. A. Sordo Díaz, The proportional likelihood ratio order and applications, Qüestiió 25 (2) (2001), pp. 211-223.
  • [31] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York 2007.
  • [32] W. J. Zimmer, Y. Wang, and P. K. Pathak, Log-odds rate and monotone log-odds rate distributions, J. Qual. Technol. 30 (1998), pp. 376-385.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3f4d423-d8f6-411c-ade6-c01ebec3bafc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.