PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bernstein operational matrix of differentiation and collocation approach for a class of three-point singular BVPs: error estimate and convergence analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Singular boundary value problems (BVPs) have widespread applications in the field of engineering, chemical science, astrophysics and mathematical biology. Finding an approximate solution to a problem with both singularity and non-linearity is highly challenging. The goal of the current study is to establish a numerical approach for dealing with problems involving three-point boundary conditions. The Bernstein polynomials and collocation nodes of a domain are used for developing the proposed numerical approach. The straightforward mathematical formulation and easy to code, makes the proposed numerical method accessible and adaptable for the researchers working in the field of engineering and sciences. The priori error estimate and convergence analysis are carried out to affirm the viability of the proposed method. Various examples are considered and worked out in order to illustrate its applicability and effectiveness. The results demonstrate excellent accuracy and efficiency compared to the other existing methods.
Rocznik
Strony
575--601
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Madan Mohan Malaviya University of Technology, Department of Mathematics and Scientific Computing, Gorakhpur – 273010, India
  • Madan Mohan Malaviya University of Technology, Department of Mathematics and Scientific Computing, Gorakhpur – 273010, India
  • Saint Xavier University, Department of Mathematics, Chicago, IL 60655, USA
  • University of Limerick, Department of Mathematics and Statistics, V94 T9PX Limerick, Ireland
Bibliografia
  • [1] R.P. Agarwal, D. O’Regan, Singular Differential and Integral Equations with Applications, Springer Science & Business Media, 2010.
  • [2] R. Agarwal, H. Thompson, C. Tisdell, Three-point boundary value problems for second-order discrete equations, Comput. Math. Appl. 45 (2003), 1429–1435.
  • [3] I. Ahmad, M.A.Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically, Neural Computing and Applications 33 (2021), 5753–5769.
  • [4] M. Alves, Singular functional differential equation of the second order: Diss. kand. phys.-matem. nauk, Perm University, Perm, 1999.
  • [5] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations: Methods and Applications, Hindawi Publishing Corporation, 2007.
  • [6] A.K. Barnwal, P. Pathak, Successive iteration technique for singular nonlinear system with four-point boundary conditions, J. Appl. Math. Comput. 62 (2020), 301–324.
  • [7] A.K. Barnwal, N. Sriwastav, A technique for solving system of generalized Emden–Fowler equation using legendre wavelet, TWMS J. App. and Eng. Math. 13 (2023), 341–361.
  • [8] A.S. Bataineh, A.A. Al-Omari, O. Rasit Isik, I. Hashim, Multistage Bernstein collocation method for solving strongly nonlinear damped systems, J. Vib. Control 25 (2019), no. 1, 122–131.
  • [9] M. Cecchi, Z. Došlá, I. Kiguradze, M. Marini, On nonnegative solutions of singular boundary-value problems for Emden–Fowler-type differential systems, Differential Integral Equations 20 (2007), 1081–1106.
  • [10] M. Chawla, R. Subramanian, A new spline method for singular two-point boundary value problems, Int. J. Comput. Math. 24 (1988), 291–310.
  • [11] F. Geng, A numerical algorithm for nonlinear multi-point boundary value problems, J. Comput. Appl. Math. 236 (2012), 1789–1794.
  • [12] M. Greguš, F. Neuman, F. Arscott, Three-point boundary value problems in differential equations, J. London Math. Soc. 2 (1971), 429–436.
  • [13] J.-H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350 (2006), 87–88.
  • [14] F. Jin, B. Yan, Existence of positive solutions for singular Dirichlet boundary value problems with impulse and derivative dependence, Bound. Value Probl. 2020 (2020), Article no. 157.
  • [15] A.R. Kanth, K. Aruna, He’s variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl. 60 (2010), 821–829.
  • [16] A.R. Kanth, V. Bhattacharya, Cubic spline for a class of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput. 174 (2006), 768–774.
  • [17] S.A. Khuri, A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Modelling 52 (2010), 626–636.
  • [18] I. Kiguradze, On a singular multi-point boundary value problem, Ann. Mat. Pura Appl. 86 (1970), 367–399.
  • [19] I. Kiguradze, B. Shekhter, Singular boundary-value problems for ordinary second-order differential equations, J. Soviet Math. 43 (1988), 2340–2417.
  • [20] K.M. Levasseur, A probabilistic proof of the Weierstrass approximation theorem, Amer. Math. Monthly 91 (1984), 249–250.
  • [21] K. Maleknejad, B. Basirat, E. Hashemizadeh, A Bernstein operational matrix approach for solving a system of high order linear Volterra–Fredholm integro-differential equations, Math. Comput. Modelling 55 (2012), 1363–1372.
  • [22] V.E. Mkrtchian, C. Henkel, Green function solution of generalised boundary value problems, Phys. Lett. A 384 (2020), 126573.
  • [23] Y. Öztürk, M. Gülsu, An approximation algorithm for the solution of the Lane–Emden type equations arising in astrophysics and engineering using Hermite polynomials, Comput. Appl. Math. 33 (2014), 131–145.
  • [24] R.K. Pandey, On a class of weakly regular singular two-point boundary value problems, II, J. Differential Equations 127 (1996), 110–123.
  • [25] S.V. Parter, Solutions of a differential equation arising in chemical reactor processes, SIAM J. Appl. Math. 26 (1974), 687–716.
  • [26] S.V. Parter, M.L. Stein, P.R. Stein, On the multiplicity of solutions of a differential equation arising in chemical reactor theory, Studies in Applied Mathematics 54 (1975), 293–314.
  • [27] R. Rach, J. Duan, A.M. Wazwaz, Solving the two–dimensional Lane–Emden type equations by the Adomian decomposition method, Journal of Applied Mathematics and Statistics 3 (2016), 15–26.
  • [28] H. Ramos, G. Singh, V. Kanwar, S. Bhatia, An embedded 3(2) pair of nonlinear methods for solving first order initial-value ordinary differential systems, Numer. Algorithms 75 (2017), 509–529.
  • [29] H. Ramos, J. Vigo-Aguiar, A fourth-order Runge–Kutta method based on BDF-type Chebyshev approximations, J. Comput. Appl. Math. 204 (2007), 124–136.
  • [30] J. Rashidinia, R. Mohammadi, R. Jalilian, The numerical solution of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput. 185 (2007), 360–367.
  • [31] P. Roul, D. Biswal, A new numerical approach for solving a class of singular two-point boundary value problems, Numer. Algorithms 75 (2017), 531–552.
  • [32] R. Russell, L. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal. 12 (1975), 13–36.
  • [33] J. Shahni, R. Singh, Numerical solution of system of Emden-Fowler type equations by Bernstein collocation method, Journal of Mathematical Chemistry 59 (2021), 1117–1138.
  • [34] K. Singh, A.K. Verma, M. Singh, Higher order Emden–Fowler type equations via uniform Haar wavelet resolution technique, J. Comput. Appl. Math. 376 (2020), 112836.
  • [35] M. Singh, A.K. Verma, An effective computational technique for a class of Lane–Emden equations, J. Math. Chem. 54 (2016), 231–251.
  • [36] M. Singh, A.K. Verma, R.P. Agarwal, Maximum and anti-maximum principles for three point SBVPs and nonlinear three point SBVPs, J. Appl. Math. Comput. 47 (2015), 249–263.
  • [37] M. Singh, A.K. Verma, R.P. Agarwal, On an iterative method for a class of 2 point & 3 point nonlinear SBVPs, J. Appl. Anal. Comput. 9 (2019), 1242–1260.
  • [38] O.P. Singh, R.K. Pandey, V.K. Singh, An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified homotopy analysis method, J. Appl. Anal. Comput. 180 (2009), 1116–1124.
  • [39] R. Singh, Analytic solution of singular Emden–Fowler-type equations by Green’s function and homotopy analysis method, The European Physical Journal Plus 134 (2019), Article no. 583.
  • [40] R. Singh, M. Singh, An optimal decomposition method for analytical and numerical solution of third-order Emden–Fowler type equations, J. Comput. Sci. 63 (2022), 101790.
  • [41] N. Sriwastav, A.K. Barnwal, Numerical solution of Lane-Emden pantograph delay differential equation: stability and convergence analysis, International Journal of Mathematical Modelling and Numerical Optimisation 13 (2023), 64–83.
  • [42] N. Sriwastav, A.K. Barnwal, A.M. Wazwaz, M. Singh, A novel numerical approach and stability analysis for a class of pantograph delay differential equation, J. Comput. Sci. 67 (2023), 101976.
  • [43] Y. Sun, L. Liu, J. Zhang, R.P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math 230 (2009), 738–750.
  • [44] S. Tomar, M. Singh, K. Vajravelu, H. Ramos, Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier, Math. Comput. Simulation 204 (2022), 640–644.
  • [45] Umesh, M. Kumar, Numerical solution of singular boundary value problems using advanced Adomian decomposition method, Engineering with Computers 37 (2020), 2853–2863.
  • [46] A.K. Verma, N. Kumar, M. Singh, R.P. Agarwal, A note on variation iteration method with an application on Lane–Emden equations, Engineering with Computers 38 (2020), 3932–3943.
  • [47] J. Vigo-Aguiar, H. Ramos, Variable stepsize implementation of multistep methods for y” = f(x, y, y′), J. Comput. Appl. Math. 192 (2006), 114–131.
  • [48] D.S. Watkins, Fundamentals of Matrix Computations. Third Edition, John Wiley & Sons, 2004.
  • [49] A.M. Wazwaz, R. Rach, J.S. Duan, Adomian decomposition method for solving the Volterra integral form of the Lane–Emden equations with initial values and boundary conditions, Appl. Math. Comput. 219 (2013), 5004–5019.
  • [50] L.R. Williams, R.W. Leggett, Multiple fixed point theorems for problems in chemical reactor theory, J. Math. Anal. Appl. 69 (1979), 180–193.
  • [51] A. Yıldırım, T. Öziş, Solutions of singular IVPs of Lane–Emden type by the variational iteration method, Nonlinear Anal. 70 (2009), 2480–2484.
  • [52] Ş. Yüzbaşı, A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations, Appl. Math. Comput. 273 (2016), 142–154.
  • [53] Y. Zou, Q. Hu, R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation, Appl. Math. Comput. 185 (2007), 527–537.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3f3a4d4-0a34-48b4-a1af-4896dc243cba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.