PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Couple stress fluid past a sphere embedded in a porous medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the analytical investigation of the axisymmetric and steady flow of incompressible couple stress fluid through a rigid sphere embedded in a porous medium. In the porous region, the flow field is governed by Brinkman’s equation. Here we consider uniform flow at a distance from the sphere. The boundary conditions applied on the surface of the sphere are the slip condition and zero couple stress. Analytical solution of the problem in the terms of stream function is presented by modified Bessel functions. The drag experienced by an incompressible couple stress fluid on the sphere within the porous medium is calculated. The effects of the slip parameter, the couple stress parameter, and permeability on the drag are represented graphically. Special cases of viscous flow through a sphere are obtained and the results are compared with earlier published results.
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India
autor
  • Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India
Bibliografia
  • [1] J. Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.
  • [2] H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1):27–34, 1949. doi: 10.1007/bf02120313.
  • [3] R.H. Davis and H.A. Stone. Flow through beds of porous particles. Chemical Engineering Science, 48(23):3993–4005, 1993. doi: 10.1016/0009-2509(93)80378-4.
  • [4] B. Barman. Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium. Indian Journal of Pure and Applied Mathematics, 27:1249–1256, 1996.
  • [5] I. Pop and D.B. Ingham. Flow past a sphere embedded in a porous medium based on the Brinkman model. International Communications in Heat and Mass Transfer, 23(6):865–874, 1996. doi: 10.1016/0735-1933(96)00069-3.
  • [6] D. Srinivasacharya and J.V. Ramana Murthy. Flow past an axisymmetric body embedded in a saturated porous medium. Comptes Rendus Mécanique, 330(6):417–423, 2002. doi: 10.1016/s1631-0721(02)01478-x.
  • [7] T. Grosan, A. Postelnicu, and I. Pop. Brinkman flowof a viscous fluid through a spherical porous medium embedded in another porous medium. Transport in Porous Media, 81(1):89–103, 2010. doi: 10.1007/s11242-009-9389-y.
  • [8] S. Deo and B.R. Gupta. Drag on a porous sphere embedded in another porous medium. Journal of Porous Media, 13(11):1009–1016, 2010. doi: 10.1615/JPorMedia.v13.i11.70.
  • [9] N.E. Leontev. Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition. Fluid Dynamics, 49(2):232–237, 2014. doi: 10.1134/S0015462814020112.
  • [10] S. El-Sapa. Effect of permeability of Brinkman flow on thermophoresis of a particle in a spherical cavity. European Journal of Mechanics-B/Fluids, 79:315–323, 2020. doi: 10.1016/j.euromechflu.2019.09.017.
  • [11] M.S. Faltas, H.H. Sherief, A.A. Allam, and B.A. Ahmed. Mobilities of a spherical particle straddling the interface of a semi-infinite Brinkman flow. Journal of Fluids Engineering, 143(7):071402, 2021. doi: 10.1115/1.4049931.
  • [12] M. Krishna Prasad and D. Srinivasacharya. Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium. International Journal of Fluid Mechanics Research, 44(3):229–240, 2017. doi: 10.1615/InterJFluidMechRes.2017015283.
  • [13] B.R. Jaiswal. A non-Newtonian liquid sphere embedded in a polar fluid saturated porous medium: Stokes flow. Applied Mathematics and Computation, 316:488–503, 2018. doi: 10.1016/j.amc.2017.08.009.
  • [14] K. Ramalakshmi and P. Shukla. Drag on a fluid sphere embedded in a porous medium with solid core. International Journal of Fluid Mechanics Research, 46(3):219–228, 2019. doi: 10.1615/InterJFluidMechRes.2018025197.
  • [15] K.P. Madasu and T. Bucha. Influence of mhd on micropolar fluid flow past a sphere implanted in porous media. Indian Journal of Physics, 95(6):1175–1183, 2021. doi: 10.1007/s12648-020-01759-7.
  • [16] V.K. Stokes. Couple stresses in fluids. In Theories of Fluids with Microstructure, pages 34–80. Springer, 1966. doi: 10.1007/978-3-642-82351-0_4.
  • [17] V.K. Stokes. Theories of Fluids with Microstructure: An Introduction. Springer Science & Business Media, 2012. doi: 10.1007/978-3-642-82351-0.
  • [18] D. Pal, N. Rudraiah, and R. Devanathan. A couple stress model of blood flow in the microcirculation. Bulletin of Mathematical Biology, 50(4):329–344, 1988. doi: 10.1007/BF02459703.
  • [19] N.A. Khan, A. Mahmood, and A. Ara. Approximate solution of couple stress fluid with expanding or contracting porous channel. Engineering Computations, 30(3):399–408, 2013. doi: 10.1108/02644401311314358.
  • [20] D. Srinivasacharya and K. Kaladhar. Mixed convection flowof couple stress fluid in a non-Darcy porous medium with Soret and Dufour effects. Journal of Applied Science and Engineering, 15(4):415–422, 2012.
  • [21] M. Devakar, D. Sreenivasu, and B. Shankar. Analytical solutions of couple stress fluid flows with slip boundary conditions. Alexandria Engineering Journal, 53(3):723–730, 2014. doi: 10.1016/j.aej.2014.06.005.
  • [22] D. Srinivasacharya, N. Srinivasacharyulu, and O. Odelu. Flow of couple stress fluid between two parallel porous plates. International Journal of Applied Mathematics, 41(2).
  • [23] E.A. Ashmawy. Drag on a slip spherical particle moving in a couple stress fluid. Alexandria Engineering Journal, 55(2):1159–1164, 2016. doi: 10.1016/j.aej.2016.03.032.
  • [24] P. Aparna, P. Padmaja, N. Pothanna, and J.V. Ramana Murthy. Couple stress fluid flow due to slow steady oscillations of a permeable sphere. Nonlinear Engineering, 9(1):352–360, 2020. doi: 10.1515/nleng-2020-0021.
  • [25] S.O. Adesanya, S.O. Kareem, J.A. Falade, and S.A. Arekete. Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy, 93:1239–1245, 2015. doi: 10.1016/j.energy.2015.09.115.
  • [26] A.R. Hassan. The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel. Applied Mathematics and Computation, 369:124843, 2020. doi: 10.1016/j.amc.2019.124843.
  • [27] S.I.Abdelsalam, J.X.Velasco-Hernández, and A.Z. Zaher. Electro-magnetically modulated selfpropulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20(3):861–878, 2021. doi: 10.1007/s10237-020-01407-3.
  • [28] M.M. Bhatti, S.Z. Alamri, R. Ellahi, and S.I. Abdelsalam. Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. Journal of Thermal Analysis and Calorimetry, 144(6):2259–2267, 2021. doi: 10.1007/s10973-020-10233-9.
  • [29] A.R. Hadjesfandiari and G.F. Dargush. Polar continuum mechanics. arXiv preprint arXiv:1009.3252, 2010.
  • [30] A.R. Hadjesfandiari and G.F. Dargush. Couple stress theory for solids. International Journal of Solids and Structures, 48(18):2496–2510, 2011. doi: 10.1016/j.ijsolstr.2011.05.002.
  • [31] A.R. Hadjesfandiari, G.F. Dargush, and A. Hajesfandiari. Consistent skew-symmetric couple stress theory for size-dependent creeping flow. Journal of Non-Newtonian Fluid Mechanics, 196:83–94, 2013. doi: 10.1016/j.jnnfm.2012.12.012.
  • [32] A.R. Hadjesfandiari, A. Hajesfandiari, and G.F. Dargush. Skew-symmetric couple-stress fluid mechanics. Acta Mechanica, 226(3):871–895, 2015. doi: 10.1007/s00707-014-1223-0.
  • [33] C.L.M.H. Navier. Mémoires de l’Académie Royale des Sciences de l’Institut de France. Royale des Sciences de l’Institut de France, 1823.
  • [34] I.M. Eldesoky, S.I. Abdelsalam, W.A. El-Askary, A.M. El-Refaey, and M.M. Ahmed. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience, 9(3):723–739, 2019. doi: >10.1007/s12668-019-00651-x.
  • [35] M.M. Bhatti and S.I. Abdelsalam. Thermodynamic entropy of a magnetized ree-eyring particle-fluid motion with irreversibility process: A mathematical paradigm. Journal of Applied Mathmatics nd Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 101(6):e202000186, 2021. doi: 10.1002/zamm.202000186.
  • [36] S. El-Sapa and N.S. Alsudais. Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. The European Physical Journal E, 44(5):1–11, 2021. doi: 10.1140/epje/s10189-021-00073-2.
  • [37] K.P. Madasu, M. Kaur, and T. Bucha. Slow motion past a spheroid implanted in a Brinkman medium: Slip condition. International Journal of Applied and Computational Mathematics, 7(4):1–15, 2021. doi: 10.1007/s40819-021-01104-4.
  • [38] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer Science & Business Media, 2012.
  • [39] S. El-Sapa, E.I. Saad, and M.S. Faltas. Axisymmetric motion of two spherical particles in a brinkman medium with slip surfaces. European Journal of Mechanics-B/Fluids, 67:306–313, 2018. doi: 10.1016/j.euromechflu.2017.10.003.
  • [40] V.K. Stokes. Effects of couple stresses in fluids on the creeping flow past a sphere. The Physics of Fluids, 14(7):1580–1582, 1971. doi: 10.1063/1.1693645.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3efaadc-34e9-420d-8eb1-b19f7669f568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.