Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recognizing faces under various lighting conditions is a challenging problem in artificial intelligence and applications. In this paper we describe a new face recognition algorithm which is invariant to illumination. We first convert image files to the logarithm domain and then we implement them using the dual-tree complex wavelet transform (DTCWT) which yields images approximately invariant to changes in illumination change. We classify the images by the collaborative representation-based classifier (CRC). We also perform the following sub-band transformations: (i) we set the approximation sub-band to zero if the noise standard deviation is greater than 5; (ii) we then threshold the two highest frequency wavelet sub-bands using bivariate wavelet shrinkage. (iii) otherwise, we set these two highest frequency wavelet sub-bands to zero. On obtained images we perform the inverse DTCWT which results in illumination invariant face images. The proposed method is strongly robust to Gaussian white noise. Experimental results show that our proposed algorithm outperforms several existing methods on the Extended Yale Face Database B and the CMU-PIE face database.
Wydawca
Rocznik
Tom
Strony
169--180
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Department of Computer Science and Software Engineering Concordia University, Montreal, Quebec, Canada H3G 1M8
autor
- Department of Computer Science and Software Engineering Concordia University, Montreal, Quebec, Canada H3G 1M8
- Department of Electrical Engineering, Westpomeranian University of Technology5, ul. Sikorskiego 37, 70-313 Szczecin, Poland
autor
- Department of Computational Intelligence, Częstochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
autor
- Institute of Information Technologies, University of Social Sciences, ul. Sienkiewicza 9, 90-113 Łódź
Bibliografia
- [1] X. He, S. Yan, Y. Hu, P. Niyogi and H. J. Zhang, Face recognition using Laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 328-340, 2005.
- [2] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, vol. 3, pp. 71-86, 1991.
- [3] M. Turk and A, Pentland, Face recognition using eigenfaces, Proeedings of. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3-6 June, pp. 586–591, 1991.
- [4] L. H. Yang, T. D. Bui and C. Y. Suen, Image Recognition based on Nonlinear Wavelet Approximation, International Journal of Wavelets, Multiresolution and Information Processing, vol. 1, pp. 151-162, 2003.
- [5] K. C. Lee, J. Ho and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 684-698, 2005.
- [6] S. Du and R. K. Ward, Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions, IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, pp. 1165-1175, 2010.
- [7] J. Wright, A. Y. Yang, A. Ganesh, S. Sastry and Y. Ma, Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 210-227, 2009.
- [8] W. Chen, M. Er and S. Wu, Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain, IEEE Transactions. On System, Man, Cybernetics B, vol. 36, pp. 458–466, 2006.
- [9] J. Ruiz-Pinales, J. J. Acosta-Reyes, A. SalazarGaribay and R. Jaime-Rivas, Shift invariant support vector machines face recognition system, World Academy of Science, Engineering and Technology, vol. 16, pp. 947-951, 2008.
- [10] T. Ahonen, A. Hadid and M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 2037–2041, 2006.
- [11] T. Chen, W. Yin, X. S. Zhou, D. Comaniciu and T. S. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1519–1524, 2006.
- [12] Z. R. Lai, D. Q. Dai, C. X. Ren and K. K. Huang, Multiscale logarithm difference edge maps for face recognition against varying lighting conditions, IEEE Transactions on Image Processing, vol. 24, pp. 1735-1747, 2015.
- [13] T. Zhang, Y. Y. Tang, B. Fang, Z. Shang and X. Liu, Face recognition under varying illumination using gradient faces, IEEE Transactions on Image Processing, vol. 18, pp. 2599–2606, 2009.
- [14] X. Xie, W. Zheng, J. Lai, P. C. Yuen and C. Y. Suen, (2011), Normalization of face illumination based on large and small-scale features, IEEE Transaction on Image Processing, vol. 20, pp. 1807-1821, 2011.
- [15] G. Y. Chen, An experimental study for the effects of noise on face recognition algorithms under varying illumination, Multimedia Tools and Applications, vol. 78, no. 18, pp. 26615-26631, 2019.
- [16] G. Y. Chen, T. D. Bui and A. Krzyzak, Illumination invariant face recognition using dual-tree complex wavelet transform in logarithm domain, Journal of Electrical Engineering, vol. 70, no. 2, pp.113-121, 2019.
- [17] G. Y. Chen, T. D. Bui and A. Krzyzak, Filter-based face recognition under varying illumination, IET Biometrics, vol.7, no.6, pp.628-635, 2018.
- [18] G. Y. Chen, C. J. Li and W. Sun, Hyperspectral face recognition via feature extraction and CRC-based classifier, IET Image Processing, vol. 11, no. 4, pp. 266-272, 2017.
- [19] G. Y. Chen, W. Sun and W. F. Xie, Hyperspectral face recognition using log-polar Fourier features and collaborative representation-based voting classifiers, IET Biometrics, vol. 6, no. 1, pp. 36-42, 2017.
- [20] S. Gupta, K. Thakur, M. Kumar, 2D-human face recognition using SIFT and SURF descriptors of ace’s feature regions, The Visual Computer, vol. 37, no. 3, pp. 447-56, 2021.
- [21] M. Rouhsedaghat, Y. Wang, S. Hu, S. You and CC Kuo Low-resolution face recognition in resourceconstrained environments, Pattern Recognition etters, vol. 149, pp. 193-199. 2021.
- [22] Z. Zhang and M. Yao, Illumination invariant face recognition by expected patch log likelihood, 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1-4, 2020.
- [23] Y. H. Huang and H. H. Chen, Deep face recognition for dim images, Pattern Recognition, vol. 126, 108580, 2022,
- [24] H. Hussain, F. Alotaibi, E. H. Qazi and H. A.AboAlSamh, Illumination invariant face recognition using contourlet transform and convolutional neural network, journal of intelligent & Fuzzy Systems, to appear, 2022.
- [25] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1997.
- [26] N. G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Journal of Applied and Computational Harmonic Analysis, vol. 10, pp. 234-253, 2001.
- [27] L. Sendur and I. Selesnick, Bivariate shrinkage functions for wavelet-based image denoising, IEEE Signal Processing Letters, vol. 9, no. 12, pp. 438-441, 2002.
- [28] L. Zhang, M. Yang and X. Feng, Sparse representation or collaborative representation: which helps face recognition? IEEE International Conference on Computer Vision, pp. 471-478, 2011.
- [29] T. Sim, S. Baker and M. Bsat, The CMU pose, illumination, and expression database, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 1615-1618, 2003.
- [30] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol. 81, no. 3, pp. 425-455, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3ef588b-05c9-42b0-bab3-54a9cff6f435