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Abstract

Recognizing faces under various lighting conditions is a challenging problem in artificial
intelligence and applications. In this paper we describe a new face recognition algorithm
which is invariant to illumination. We first convert image files to the logarithm domain and
then we implement them using the dual-tree complex wavelet transform (DTCWT) which
yields images approximately invariant to changes in illumination change. We classify the
images by the collaborative representation-based classifier (CRC). We also perform the
following sub-band transformations: (i) we set the approximation sub-band to zero if the
noise standard deviation is greater than 5; (ii) we then threshold the two highest frequency
wavelet sub-bands using bivariate wavelet shrinkage. (iii) otherwise, we set these two
highest frequency wavelet sub-bands to zero. On obtained images we perform the inverse
DTCWT which results in illumination invariant face images. The proposed method is
strongly robust to Gaussian white noise. Experimental results show that our proposed
algorithm outperforms several existing methods on the Extended Yale Face Database B
and the CMU-PIE face database.
Keywords: face recognition; dual-tree complex wavelet transforms (DTCWT); collabo-
rative representation-based classifier (CRC); invariant features; pattern recognition; com-
puter vision.
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1 Introduction

Face recognition is very active research area
and important issue in biometrics and various other
applications. Deep convolutional network (CNN)
can be pre-trained as a deep stacked convolutional
autoencoder (SCAE) in a greedy layer-wise un-
supervised fashion for illumination invariant face
recognition. The SCAE model can encode facial
expression images and produce a feature vector
with relatively similar illumination, regardless of
the luminance level of the input image. Further-
more, one can fine-tune the stacked shallow au-
toencoders after each one of these is trained greed-
ily, rather than just at the end, and show that this
approach significantly improves the set of illumi-
nation invariant features learnt by the SCAE. The
drawback of deep leaning for illumination invari-
ant face recognition is that deep learning need many
training samples and it is extremely slow during the
training of the networks.

We briefly review many conventional methods
for illumination invariant face recognition here. The
first successful algorithm popular in applications is
the one called Eigenfaces [2, 3] has been introduced
in 1991. It is based on principal components analy-
sis, which performs dimensionality reduction and
extracts the most relevant information from face
images. Another popular algorithm called Lapla-
cianfaces [1] has been introduced in 2005. It uses
locality-preserving projections. In [4] the authors
applied wavelets to face recognition and showed
that nonlinear approximation preserves more infor-
mation than linear approximation. Lee et al. [5] in-
vestigated face recognition under physical lighting
condition in such a way that studied images could
form basis in the low-dimensional linear space.
Region-based face enhancement was considered by
Du and Wu [6], however this approach results in
some defects on the boundaries between different
regions. A novel robust face recognition based on
sparse representation was proposed by Wright et al.
[7]. They considered frontal views only but var-
ied the expressions, occlusions, disguise and illu-
mination and different categories were represented
by the linear regression models. Chen et al. [8]
introduced robust face illumination normalization
by applying discrete cosine transform (DCT) to the
logarithmic transformation of the face illumination
images (LOG-DCT) and by zeroing low resolu-

tion DCT coefficients followed by the inverse DCT,
which effectively resulted in face illumination maps
invariance. Ruiz-Pinales et al. [9] introduced trans-
lation invariant support vector machine (SVM) face
recognition algorithm, owing translation invariance
using maximum cross-correlation in place of dot-
product. Ahonen et al. [10] proposed a fast face
recognition algorithm based on local binary pat-
terns (LBP) texture features by forming a feature
vector made up of LBP features extracted from dif-
ferent regions of the image. Chen et al. [11] intro-
duced a log total variation model (LTV) applicable
to face recognition under variable lighting condi-
tions. One of the weaknesses of the model is its
computational complexity which model owing to
the need of solving differential equations. Lai et al.
[12] proposed a face classification algorithm using
multiscale logarithm difference model (edge maps)
under variable lighting conditions. This edge-map
model is better than such competing models as
LOG-DCT or LTV as it removes light intensity
from neighborhood pixels. Zhang et al. [13] in-
vestigated gradient-based face classification under
different illuminations, however gradient-based ap-
proaches are sensitive to noise. Illumination invari-
ant face recognition has been investigated by sev-
eral researchers. Xie et al. [14] achieved good
results by normalizing face illumination and used
large- and small-scale features. Chen et al. [15,
16, 17] investigated several novel algorithms based
on dual-tree complex wavelet transform (DTCWT)
and other filters. Chen et al. [18, 19] stud-
ied hyperspectral approaches taking advantage of
log-polar Fourier and other features. Illumination-
invariant face recognition approaches proposed by
Chen et al. favourably compared to other compet-
ing techniques and are currently the state-of-the-arts
methods. Gupta et al. [20] studied the feature-
based method for 2D face images. speeded up
robust features (SURF) and scale-invariant feature
transform (SIFT). Different combinations of SIFT
and SURF features with two classification tech-
niques such as decision tree and random forest have
been implemented in their paper. Rouhsedaghat
et al. [21] adopted a new machine learning tech-
nique called Successive Subspace Learning (SSL)
to propose a high-performance data-efficient low-
resolution face recognition model for resource-
constrained environments. SSL provides an ex-
plainable non-parametric feature extraction sub-
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model which flexibly trades the model size for the
verification performance. Zhang and Yao [22] used
the Expected Patch Log Likelihood (EPLL) tech-
nique to extract illumination weight and combined
it with the Neighboring Radiance Ratio algorithm
(NRR) to optimize the initial vector of the Gaussian
mixture model, which makes full use of the redun-
dant information in images. Their experiments with
the extended Yale B and CMU PIE face databases
demonstrated that the proposed algorithm could re-
duce the influence of illumination on face images.
Huang and Chen [23] developed a new framework
for effectively enhancing the performance of deep
face recognition for low illumination images. Their
feature restoration network achieves computational
efficiency at the cost of only a few more param-
eters and FLOPs compared to the original feature
extraction model. Furthermore, the training of this
network does not need a very big dataset. Hussain
et al. [24] developed a new algorithm for illumi-
nation invariant face recognition, which takes ad-
vantage of large-scale and small-scale components
by discarding the illumination artifacts and detri-
mental noise using Contourlets. After discarding
the unwanted components, local and global fea-
tures are extracted using a convolutional neural net-
work (CNN) model. They used three CNN mod-
els: VGG-16, GoogLeNet, and ResNet152 in their
work.

In this paper, we introduce a new illumination-
invariant face recognition algorithm based on the
dual-tree complex wavelet transform (DTCWT)
and on collaborative representation (CRC classi-
fier). The main steps of the algorithm involve set-
ting to zero the approximate sub-band values and
thresholding the two highest frequency wavelet sub-
bands by means of bivariate wavelet shrinkage in
case noise standard deviation exceeds value 5. In
case the latter condition is not satisfied the two
highest frequency wavelet sub-bands are set to zero.
Finally, we generate the illumination-invariant face
images by the inverse DTCWT. Our newly pro-
posed algorithm is strongly robust to Gaussian
white noise, and it outperforms competing algo-
rithms in experiments on the Extended Yale Face
Database B and on the CMU-PIE illumination face
database.

The paper is organized as follows. Section
2 our novel DTCWT based illumination-invariant

face recognition algorithm. In Section 3 we de-
scribe two face databases that contain face images
with diverse illumination changes. In Section 4
we present the results of experiments conducted
the Yale and CMU-PIE database face images. The
conclusions and possible future extensions are pre-
sented in the final Section 5 of the paper.

2 The Proposed Method

We start with a brief survey of the Lamber-
tian reflectance theory, DTCWT transform, bivari-
ate wavelet shrinkage, and the CRC classifier. Fol-
lowing the Lambertian reflectance model the inten-
sity image can be modeled [25] by

I(x,y) = R(x,y)L(x,y) (1)

where R and L represent the reflectance and illumi-
nation, respectively. As R depends only on the sur-
face material of the subject, it is then intrinsic rep-
resentation of the face image. To simplify compu-
tational complexity of model (1) we transform face
intensity image by applying logarithm transform to
it, which turns the multiplicative model to an addi-
tive one:

log I(x,y) = logR(x,y)+ logL(x,y) (2)

Kingsbury [26] applied dual tree wavelet filters to
discrete wavelet transform and thus obtained par-
tial redundancy (2m:1 for m-dimensional signals)
and approximate shift invariance. A by-product of
his modification were directionally selective filters
(properties not shared by the standard wavelet trans-
form) which kept the usual properties of perfect
reconstruction and computational efficiency with
well-balanced frequency responses. He also pro-
posed a way to construct a new transform to make
it shift-invariant, investigated its approximation ac-
curacy described suitable filters having the desired
properties. He introduced two different versions
of the new transform: one based on odd/even and
the other based on quarter-sample shift (Q-shift) fil-
ters. He then outlined the extension of the dual
tree to images and other multi-dimensional signals
and discussed the range of applications which could
benefit from his innovative methodology.

The DTCWT transform has six directionally
selective filters (See Figure 1 for an illustration),
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while standard wavelet transform has only two
dominant orientations. The discrete wavelet trans-
form (DWT) is very sensitive to spatial shifts: a lit-
tle shift in spatial domain will cause very different
wavelet coefficients. This is the main reason why
we choose the DTCWT transform in this paper.

Figure 1. These are impulse responses of 2-D
complex wavelet filters.

The DTCWT of a signal x is implemented by
applying in parallel two critically sampled DWTs
on the same data. The transformation cost because
N-point signal yields 2N DWT coefficients. If the
filters in the upper and lower DWTs are identical,
then the new method does not offer any advantage.
On the other hand, if the filters are designed in a
specific way, then the sub-band signals of the up-
per and lower DWT can be interpreted as the real
and imaginary part of a complex wavelet transform,
respectively.

The two analysis filter matrices, af(1) and af(2),
and synthesis filter matrices, sf(1) and sf(2), are as
follows:

af(1)
0.03516384 0

0 0
-0.08832942 -0.11430184
0.23389032 0
0.76027237 0.58751830
0.58751830 -0.76027237

0 0.23389032
-0.11430184 0.08832942

0 0
0 -0.03516384

af(2)
0 -0.03516384
0 0

-0.11430184 0.08832942
0 0.23389032

0.76027237 0.58751830
0.58751830 -0.76027237
0.23389032 0
-0.08832942 -0.11430184

0 0
0.03516384 0

sf(1)
0 -0.03516384
0 0

-0.11430184 0.08832942
0 0.23389032

0.76027237 0.58751830
0.58751830 -0.76027237
0.23389032 0
-0.08832942 -0.11430184

0 0
0.03516384 0

sf(2)
0.03516384 0

0 0
-0.08832942 -0.11430184
0.23389032 0
0.76027237 0.58751830
0.58751830 -0.76027237

0 0.23389032
-0.11430184 0.08832942

0 0
0 -0.03516384

Sendur and Selesnick [27] improved the per-
formance of image-denoising algorithms using
wavelet transforms by studying the statistical de-
pendencies among wavelet coefficients. In their
previous work, a simple bivariate shrinkage rule
was introduced using a coefficient and its parent.
Let y1 be the current wavelet coefficient, y2 the par-
ent coefficient, w1 the denoised wavelet coefficient,
σn the noise standard deviation of the whole im-
age, and σ the local noise standard deviation in a
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small neighbourhood of y1. The bivariate thresh-
olding formula is given by

w1 = y1 ·


1−

√
3

σ σ2
n√

y2
1 + y2

2




+

(3)

Here (x)+ = max(0,x). The performance was im-
proved using simple models by estimating model
parameters in a local neighborhood. They presented
a locally adaptive denoising algorithm using the bi-
variate shrinkage function. The algorithm is illus-
trated using both the orthogonal and dual tree com-
plex wavelet transforms. They also presented sev-
eral comparisons with the best available methods in
order to demonstrate the effectiveness of their pro-
posed algorithm.

It is commonly believed that the l1- norm spar-
sity constraint on coding coefficients plays key role
in success of the sparse representation-based clas-
sifier (SRC), whereas the use of all training sam-
ples to collaboratively represent the query sample
is suppressed. The authors of [28] discussed how
SRC works and showed that the collaborative rep-
resentation mechanism used in SRC plays key role
and is primarily responsible for its success in face
recognition. The SRC is a special case of the CRC,
which applies different norms to coding residuals
and coding coefficients. Furthermore, the l1 or l2
norm characterization of coding residual depends
on the robustness of CRC to the outlier facial pixels,
whereas the l1 or l2 norm characterization of coding
coefficient depends on the degree of discrimination
of facial features. Experiments demonstrated the
accuracy and efficiency of the CRC in face recogni-
tion.

In CRC, one is required to solve the following
optimization problem:

α̃k = argmin
a

||bk −Aα||22 +λ||α||22 (4)

where λ is a parameter and α̃k = [α̃k1, α̃k2, . . . , α̃k2]
is the coding vector associated with class k. Let Ak
be the dataset of the k-th class and let each column
of matrix Ak be a sample of class k. Assume that we
have K classes of subjects, thus A= [A1,A2, . . . ,Ak].

The optimization problem (4) has a closed-form
solution:

α̃k = (AT A+λI)−1AT bk with k ∈ [1,K], (5)

where AT denotes the transpose of matrix A and K
is the number of subjects. Because (AT A+λI)−1AT

can be computed off-line, we can speed up the cal-
culation by α̃k = Dbk. Let eki = ||bk −Aiα̃ki|| and
ek = (ek1ek2 · · ·ekC)

T . The CRC classifies a face
bk to the class with the label zk = identity(bk) =
argmini{eki}. The CRC chooses the class that
yields the smallest reconstruction error. The speed
of the CRC face recognizer is much higher than that
of the SRC.

Inspired by LOG-DCT [10], we propose in this
paper a new algorithm for illumination-invariant
face recognition. Because of varied illumination
conditions, the acquired face images can be very
dark, which lowers efficiency of the existing face
recognition methods. To mitigate this problem, we
increase brightness of the dark region and reduce
brightness of dark regions by implementing the log-
arithm transform. Subsequently we subject the im-
ages to DTCWT transformation followed by setting
the approximation sub-band to zero, and by thresh-
olding two highest frequency wavelet sub-bands to
zero by bivariate wavelet shrinkage. Finally, an
inverse DTCWT transformation is used to gener-
ate the enhanced face images, which are approxi-
mately invariant to illumination. The reason why
we choose DTCWT transform is that it can repre-
sent images more accurately. Figure 2 shows the
input and output of our illumination invariant face
recognition algorithm: (a) the input face image, (b)
the output illumination invariant face generated by
the inverse DTCWT transform.

Figure 2. The input and output of our new face
recognition algorithm LOG-DTCWT: (a) the input

face image, (b) the output illumination invariant
face image generated by inverse DTCWT

transform.

We present the steps of our new algorithm for
illumination invariant face recognition by using the
DTCWT transform. Our algorithm is very robust to
Gaussian white noise due to the bivariate wavelet
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shrinkage introduced in our algorithm. Figure 3
shows the flowchart of our proposed algorithm in
this paper: (a) the input face image, (b) the log-
arithm of the input image, (c) the DTCWT trans-
form on the logarithm image, (d) set the approxi-
mation sub-band to zeros and threshold/set to zero
values for two highest frequency wavelet sub-bands
by bivariate wavelet shrinkage, (e) the output illu-
mination invariant face image generated by inverse
DTCWT transform, (f) the CRC classifier to clas-
sify the unknown faces.

This algorithm can be described as follows:

Algorithm 1. New Algorithm

1. Initialization: J = 4.

2. Take the logarithm transform of the intensity
image I(x,y) as equation (2).

3. Normalize image log I(x,y) to the range
[0.,255], denoted as IM.

4. Perform the forward DTCWT transform to IM
for J decomposition levels, denote it as CIM =
DTCWT (IM,J).

5. Set the approximation sub-band to zero values.

6. Noise standard deviation σn can be estimated
as in [30].

7. If noise standard deviation σn is greater than
5, then threshold the two highest frequency
wavelet sub-bands by bivariate wavelet shrink-
age. Otherwise, set these two highest frequency
wavelet sub-bands to zero values.

8. Conduct inverse DTCWT transform to the out-
put image from Step 7) in order to obtain face
image D.

9. Normalize D so that it has zero mean and unit
variance.

10. Set E = Dk, where k = 0.69 is a constant.

11. Use CRC to classify the resulting face image
to one of the known classes.

The contributions of this paper can be summa-
rized here. In our new algorithm, we perform loga-
rithm transform to make dark regions brighter. We
perform DTCWT transform to the normalized LOG

images for several scales and set the approxima-
tion sub-band to zero values. If the noise standard
deviation is greater than 5, then we threshold two
highest frequency wavelet sub-bands by bivariate
wavelet shrinkage. Otherwise, we set these two
highest frequency wavelet sub-bands to zero val-
ues. An inverse DTCWT transform will generate
the enhanced faces, which are approximately invari-
ant to illumination changes and hence are good for
face recognition. The combination of logarithm-
DTCWT in this way is new to our best knowledge.
In addition, our new algorithm is very robust to
Gaussian white noise due to the introduction of bi-
variate wavelet shrinkage. Our method is easy to
implement, and it yields higher recognition rates
than several existing methods for both Extended
Yale Face Database B [5] and CMU-PIE illumina-
tion face database [24] no matter there exist noise
in the face images or not.

3 Two Face Databases

Our new algorithm was validated in experi-
ments with the Extended Yale Face Database B [5]
and the CMU-PIE illumination face database [29].
The Extended Yale B database contains face images
of 38 subjects in 64 different lighting conditions:
from normal to extremely badly illuminated. This
database contains 2414 face images. We cropped
and fixed the face images ending up with 192x168
images. We take one well-lighted face image as
the single reference and take all the rest available
2414−38= 2376 images as test samples. The faces
can be divided into 5 subsets based on the angles
between the light source direction and the camera
axis. The degree of variation increases as we move
from Subset 1 to Subset 5. Figure 4 presents sam-
ples of five subsets for one subject.

The second database used in experiments was
the CMU Pose, Illumination and Expression (PIE)
database with 41368 face images acquired from 68
subjects. The images for every subject are captured
with 13 different poses and 43 illumination condi-
tions. We only select images that focus on illumina-
tion variations of light intensity and of frontal view
directions. There exist 68 subjects in each of 43
images producing a total of 2924 images. Figure
5 presents samples of face images from CMU-PIE
under different lighting conditions
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8. Conduct inverse DTCWT transform to the out-
put image from Step 7) in order to obtain face
image D.

9. Normalize D so that it has zero mean and unit
variance.

10. Set E = Dk, where k = 0.69 is a constant.

11. Use CRC to classify the resulting face image
to one of the known classes.

The contributions of this paper can be summa-
rized here. In our new algorithm, we perform loga-
rithm transform to make dark regions brighter. We
perform DTCWT transform to the normalized LOG

images for several scales and set the approxima-
tion sub-band to zero values. If the noise standard
deviation is greater than 5, then we threshold two
highest frequency wavelet sub-bands by bivariate
wavelet shrinkage. Otherwise, we set these two
highest frequency wavelet sub-bands to zero val-
ues. An inverse DTCWT transform will generate
the enhanced faces, which are approximately invari-
ant to illumination changes and hence are good for
face recognition. The combination of logarithm-
DTCWT in this way is new to our best knowledge.
In addition, our new algorithm is very robust to
Gaussian white noise due to the introduction of bi-
variate wavelet shrinkage. Our method is easy to
implement, and it yields higher recognition rates
than several existing methods for both Extended
Yale Face Database B [5] and CMU-PIE illumina-
tion face database [24] no matter there exist noise
in the face images or not.

3 Two Face Databases

Our new algorithm was validated in experi-
ments with the Extended Yale Face Database B [5]
and the CMU-PIE illumination face database [29].
The Extended Yale B database contains face images
of 38 subjects in 64 different lighting conditions:
from normal to extremely badly illuminated. This
database contains 2414 face images. We cropped
and fixed the face images ending up with 192x168
images. We take one well-lighted face image as
the single reference and take all the rest available
2414−38= 2376 images as test samples. The faces
can be divided into 5 subsets based on the angles
between the light source direction and the camera
axis. The degree of variation increases as we move
from Subset 1 to Subset 5. Figure 4 presents sam-
ples of five subsets for one subject.

The second database used in experiments was
the CMU Pose, Illumination and Expression (PIE)
database with 41368 face images acquired from 68
subjects. The images for every subject are captured
with 13 different poses and 43 illumination condi-
tions. We only select images that focus on illumina-
tion variations of light intensity and of frontal view
directions. There exist 68 subjects in each of 43
images producing a total of 2924 images. Figure
5 presents samples of face images from CMU-PIE
under different lighting conditions
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Figure 3. The different steps of our new face recognition algorithm LOG-DTCWT: (a) the input face
image, (b) the logarithm of the input image, (c) the DTCWT transform on the logarithm image, (d) set the

approximation sub-band to zeros and threshold/set to zero values for two highest frequency wavelet
sub-bands by bivariate wavelet shrinkage, (e) the output illumination invariant face image generated by

inverse DTCWT transform, (f) the CRC classifier.

Figure 4. The five subsets of the Extended Yale-B
face database.

For both Extended Yale face database B and
CMU-PIE face database, we choose only one
frontally lit face image in each class for training
and the remaining face images for testing. We
convert every face image to the logarithm domain
and normalize the logarithm image to the range of
[0,255]. We then perform DTCWT transform to
these normalized face images for several scales and
set the approximation sub-band to zero values. If
the noise standard deviation is greater than 5, then
we threshold two highest frequency wavelet sub-
bands by bivariate wavelet shrinkage. Otherwise,
we set these two wavelet sub-bands to zero values.
An inverse DTCWT transform will generate the en-
hanced faces, which are approximately invariant to

illumination changes and robust to noise, and hence
are good for face recognition.

4 Experimental Results

We conduct several experiments to test the ef-
fectiveness of the algorithm introduced in this pa-
per. In Table 2 we compare the correct classifi-
cation rates of our novel approach with a number
of competing approaches obtained in experiments
conducted on samples from the Extended Yale face
database B and CMU-PIE face database. The cor-
rect classification rate is defined as the percentage
of faces that are recognized correctly. In this pa-
per, we only implement our proposed method in
this paper, LOG-DTCWT [16] and LOG whereas
all other classification results are copied from Xie
et al. [14]. For subset 1 of the Yale-B face database
B, our method yields classification rate of 94.67%
whereas Large and Small-Scale features [14], LTV
[11] and Local Binary Pattern [10] approaches yield
perfect classification rate (100%). Xie et al. [14]
obtained 91.2% average correct recognition rate for
the Extended Yale database B. Our new algorithm
proposed in this paper achieves 92.46% average
classification rate which is the best rate for all the
methods compared in this paper. This demonstrates
the strength of our novel robust face recognition ap-
proach. We obtained the perfect 100% classifica-
tion rate on the Extended Yale database B and on
the CMU-PIE illumination face database. The same
100% rate was obtained by the competing algo-
rithms on the former database, whereas on the latter
one some competing algorithms obtained lower rate
than 100%. Thus, we can conclude that the new al-
gorithm proposed in this paper is very effective in
illumination-invariant face recognition.
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Figure 5. An example of the face images under different lighting condition of the CMU-PIE illumination
face database.

Table 1. The five subsets of the Extended Yale
Face Database, their corresponding angles, and the

number of faces in each.

Subsets Angles Number
of Faces

Subset 1 1◦ ≤ angle ≤ 12◦ 7×38
Subset 2 13◦ ≤ angle ≤ 25◦ 12×38
Subset 3 26◦ ≤ angle ≤ 50◦ 12×38
Subset 4 51◦ ≤ angle ≤ 77◦ 14×38
Subset 5 78◦ ≤ angle 19×38

We also test the performance of our proposed
algorithm for different noise levels. In our experi-
ments, the noise standard deviation σn ranges from
5 to 40. The noisy face images are generated by
adding Gaussian white noise to the noise-free face
images (B = A+σnI, where I obeys Gaussian dis-
tribution N(0,1) with 0 mean and unit variance).
Figure 6 shows the noise-added face images for σn

ranging from 5 to 40. We compare our proposed
algorithm with LOG-DTCWT [16], LOG-Discrete
Wavelet Transform (LOG-DWT) and LOG-DCT
for both extended Yale face database B and CMU-
PIE face database. Table 3 shows the correct clas-
sification rates (%) of the proposed method, LOG-
DTCWT [16], LOG-DWT, and LOG-DCT for face
images corrupted by Gaussian white noise. For ex-
tended Yale face database B, our proposed algo-
rithm outperforms LOG-DTCWT [16], LOG-DWT
and LOG-DCT for all experiments. Nevertheless,
for the CMU-PIE face database, all three algorithms

achieve perfect recognition results (100%). To sum
up, our new algorithm proposed in this paper is very
robust to Gaussian white noise for illumination in-
variant face recognition.

Conclusions

In this paper, we proposed a novel algorithm for
face recognition by extracting DTCWT faces in the
logarithm domain. We convert the face image to the
logarithm domain and normalize the logarithm im-
age to the range of [0, 255]. We perform DTCWT
transform to the normalized logarithm face image
for several scales and set the approximation sub-
band to zero values. If the noise standard devia-
tion is greater than 5, then we threshold two highest
frequency wavelet sub-bands by bivariate wavelet
shrinkage. Otherwise, we set these two wavelet
sub-bands to zero values. An inverse DTCWT
transform will generate the enhanced faces, which
are approximately invariant to illumination changes
and hence are good for face recognition. Our new
algorithm with the CRC classifier is relatively in-
variant to illumination changes in the face images.
Our algorithm beats several existing algorithms in
terms of correct recognition rate for the Extended
Yale Face Database B. Our algorithm outperforms
every algorithm for the CMU-PIE illumination face
database. The algorithm proposed in this paper
is more suitable for recognizing face images with
varying illumination. Also, our new algorithm is
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Figure 5. An example of the face images under different lighting condition of the CMU-PIE illumination
face database.

Table 1. The five subsets of the Extended Yale
Face Database, their corresponding angles, and the

number of faces in each.

Subsets Angles Number
of Faces

Subset 1 1◦ ≤ angle ≤ 12◦ 7×38
Subset 2 13◦ ≤ angle ≤ 25◦ 12×38
Subset 3 26◦ ≤ angle ≤ 50◦ 12×38
Subset 4 51◦ ≤ angle ≤ 77◦ 14×38
Subset 5 78◦ ≤ angle 19×38

We also test the performance of our proposed
algorithm for different noise levels. In our experi-
ments, the noise standard deviation σn ranges from
5 to 40. The noisy face images are generated by
adding Gaussian white noise to the noise-free face
images (B = A+σnI, where I obeys Gaussian dis-
tribution N(0,1) with 0 mean and unit variance).
Figure 6 shows the noise-added face images for σn

ranging from 5 to 40. We compare our proposed
algorithm with LOG-DTCWT [16], LOG-Discrete
Wavelet Transform (LOG-DWT) and LOG-DCT
for both extended Yale face database B and CMU-
PIE face database. Table 3 shows the correct clas-
sification rates (%) of the proposed method, LOG-
DTCWT [16], LOG-DWT, and LOG-DCT for face
images corrupted by Gaussian white noise. For ex-
tended Yale face database B, our proposed algo-
rithm outperforms LOG-DTCWT [16], LOG-DWT
and LOG-DCT for all experiments. Nevertheless,
for the CMU-PIE face database, all three algorithms

achieve perfect recognition results (100%). To sum
up, our new algorithm proposed in this paper is very
robust to Gaussian white noise for illumination in-
variant face recognition.

Conclusions

In this paper, we proposed a novel algorithm for
face recognition by extracting DTCWT faces in the
logarithm domain. We convert the face image to the
logarithm domain and normalize the logarithm im-
age to the range of [0, 255]. We perform DTCWT
transform to the normalized logarithm face image
for several scales and set the approximation sub-
band to zero values. If the noise standard devia-
tion is greater than 5, then we threshold two highest
frequency wavelet sub-bands by bivariate wavelet
shrinkage. Otherwise, we set these two wavelet
sub-bands to zero values. An inverse DTCWT
transform will generate the enhanced faces, which
are approximately invariant to illumination changes
and hence are good for face recognition. Our new
algorithm with the CRC classifier is relatively in-
variant to illumination changes in the face images.
Our algorithm beats several existing algorithms in
terms of correct recognition rate for the Extended
Yale Face Database B. Our algorithm outperforms
every algorithm for the CMU-PIE illumination face
database. The algorithm proposed in this paper
is more suitable for recognizing face images with
varying illumination. Also, our new algorithm is
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Table 2. The correct classification rates (%) of the proposed method, LOG-DTCWT [16], LOG alone,
large and small scale [14], LOG-DCT [8], LTV [11], Local binary pattern [10], and no features extraction

(None). In this table, we copied the classification rates from [14] for LOG-DCT, LTV, Local binary pattern,
and no features extraction (None). The best results are highlighted in bold.

Methods CMU-PIE
Extended Yale Face Database B

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Average
Proposed 100 94.67 100 91.05 88.63 87.96 92.46
LOG-DTCWT 100 93.4 100 91.1 88.5 87.3 92.0
LOG 99.78 98.25 99.12 67.89 30.76 26.04 64.41
Large and Small-
Scale features [14]

99.9 100 100 86.0 85.3 84.8 91.2

LOG-DCT [8] 100 92.5 100 89.2 87.0 82.8 90.3
LTV [11] 99.8 100 99.8 78.5 75.8 82.4 87.3
Local Binary Pattern
[10]

75.4 100 100 62.3 10.3 6.6 55.8

None 35.1 99.6 96.7 41.1 7.4 3.2 49.6

Table 3. The correct classification rates (%) of the proposed method, LOG-DTCWT [16], LOG-DWT, and
LOG-DCT [8] for face images corrupted by Gaussian white noise. The best results are highlighted in bold.

Databases Methods
Noise Standard Deviation (σn)

5 10 15 20 25 30 35 40

Extended
Yale Face
Database B

Proposed 87.87 82.82 79.91 77.85 76.98 75.96 75.22 74.77
LOG-DTCWT 87.32 82.39 79.61 77.32 76.54 75.70 74.47 73.71

LOG-DWT 83.26 78.93 76.68 75.34 73.94 73.00 72.25 71.58
LOG-DCT 87.28 82.28 78.85 77.17 75.85 74.59 73.94 73.53

CMU-PIE

Proposed 100 100 100 100 100 100 100 100
LOG-DTCWT 100 100 100 100 100 100 100 100

LOG-DWT 100 100 100 100 100 100 100 100
LOG-DCT 100 100 100 100 100 100 100 100
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Figure 6. An example of the noisy face images with different noise levels.

very effective under the noisy environment for face
recognition due to the bivariate wavelet shrinkage
introduced in our algorithm.

Future research will be conducted in other ar-
eas of invariant face recognition including differ-
ences in shift, pose and expression, etc. We will
also investigate new face recognition methods by
using sparse representation, deep learning and low-
rank approximation.

COMPLIANCE WITH ETHICAL STAN-
DARDS

The authors declare that there are not conflict of
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Figure 6. An example of the noisy face images with different noise levels.
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