PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On optimal and quasi-optimal controls in coefficients for multi-dimensional thermistor problem with mixed Dirichlet-Neumann boundary conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we deal with an optimal control problem in coefficients for the system of two coupled elliptic equations, also known as the thermistor problem, which provides a simultaneous description of the electric field u = u(x) and temperature θ(x). The coefficients of the operator div (B(x)∇θ(x)) are used as the controls in L∞(Ω). The optimal control problem is to minimize the discrepancy between a given distribution θd ∈ Lr(Ω) and the temperature of thermistor θ ∈ W1,γ 0 (Ω) by choosing an appropriate anisotropic heat conductivity matrix B. Basing on the perturbation theory of extremal problems and the concept of fictitious controls, we propose an “approximation approach” and discuss the existence of the so-called quasi-optimal and optimal solutions to the given problem.
Rocznik
Strony
31--68
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Department of Differential Equations, Oles Honchar Dnipro National University, Gagarin av., 72, 49010 Dnipro, Ukraine
Bibliografia
  • [1] Ambrosio, L., Fusco, N. and Pallara, D. (2000) Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York.
  • [2] Antontsev, S. N. and Chipot, M. (1994) The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25, 1128–1156.
  • [3] Antontsev, S. N. and Rodrigues, J. F. (2006) On stationary thermorheological viscous flows. Ann. Univ. Ferrara 52 (1), 19–36.
  • [4] Baranger, J. and Mikeli´c, A. (1995) Stationary solutions to a quasiNewtonian flow with viscous heating. Math. Models Methods Appl. Sci. 5 (6), 725–738.
  • [5] Buttazzo, G. and Kogut, P. I. (2011) Weak optimal controls in coefficients for linear elliptic problems. Revista Matematica Complutense 24, 83–94.
  • [6] Casas, E., Kogut, P. I. and Leugering, G. (2016) Approximation of optimal control problems in the coefficient for the p-Laplace equation. I. Convergence result. SIAM J. Control Optim. 54 (3), 1406–1422.
  • [7] Cruz-Uribe, D. V. and Fiorenza, A. (2013) Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhauser, New York.
  • [8] D’Apice, C., De Maio, U. and Kogut, O. P. (2010) On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations. Advances in Differential Equations 15 (7–8), 689–720.
  • [9] D’Apice, C., De Maio, U. and Kogut, O. P. (2012) Optimal control problems in coefficients for degenerate equations of monotone type: Shape stability and attainability problems. SIAM Journal on Control and Optimization 50 (3), 1174–1199.
  • [10] D’Apice, C., De Maio, U. and Kogut, P. I. (2018) Thermistor problem: Multi-dimensional modelling, optimization, and approximation. 32nd European Conference on Modelling and Simulation, May 22nd–May 25th, 2018, Wilhelmshaven, Germany.
  • [11] D’Apice, C., De Maio, U. and Kogut, P. I. (2019) An indirect approach to the existence of quasi-optimal controls in coefficients for multi-dimensional thermistor problem. Networks and Heterogeneous Media, to appear.
  • [12] Diening, L., Harjulehto, P., H¨ast¨o, P. and Ruzicka, M. (2011) Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York.
  • [13] Disser, K., Kaiser, H.-C. and Rehberg, J. (2015) Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems. SIAM J. Math. Anal. 47 (3), 1719–1746.
  • [14] Fowler, A. ˙C., Frigaard, I. and Howison, S.D. (1992) Temperature surges in current-limiting circuit devices. SIAM J. on Applied Mathematics 52, 998–1011.
  • [15] Giusti, E. (1984) Minimal Surfaces and Functions of Bounded Variation. Birkh¨auser, Boston.
  • [16] Homberg, D., Meyer, C., Rehberg, J. and Ring, W. (2010) Optimal control for the thermistor problem. SIAM Journal on Control and Optimization 49 (5), 3449–3481.
  • [17] Horsin, T. and Kogut, P.I. (2015) Optimal L2-control problem in coefficients for a linear elliptic equation. Mathematical Control and Related Fields 5 (1), 73–96.
  • [18] Horsin, T. and Kogut, P.I. (2016) On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems. Asymptotic Analysis 98, 155–188.
  • [19] Hrynkiv, V. (2009) Optimal boundary control for a time dependent thermistor problem. Electr. Journal of Diff. Equations. 2009 (83), 1–22.
  • [20] Hrynkiv, V. and Koshkin, S. (2018) Optimal control of a thermistor problem with vanishing conductivity. Applied Mathematics and Optimization https://doi.org/10.1007/s00245-018-9511-z, 1–28.
  • [21] Howison, S. D., Rodrigues, J. F. and Shillor, M. (1993) Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (2), 573–588.
  • [22] Kogut, P.I. (2014) On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete and Continuous Dynamical Systems Series A, 34 (5), 2105–2133.
  • [23] Kogut, P. and Leugering, G. (2011) Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis. Series: Systems and Control, Birkh¨auser Verlag, Boston.
  • [24] Kogut, P. and Leugering, G. (2013) Matrix-valued L1-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications 32 (4), 433–456.
  • [25] Kogut, P.I., Manzo, R. and Putchenko, A. (2016) On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type. Boundary Value Problems 2016 (1), 1–32.
  • [26] Kuttler, K. L., Shillor, M. and Fernandez, J. R. (2008) Existence for the thermoviscoelastic thermistor problem. Differential Equations and Dynamical Systems 16 (4), 309–332.
  • [27] Meyer, C., Panizzi, L. and Schiela, A. (2011) Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control. Numer. Funct. Anal. Optim. 32 (9), 983–1007.
  • [28] Meinlschmidt, H., Meyer, C. and Rehberg, J. (2016) Optimal control of the thermistor problem in three spatial dimensions. arXiv:1603.04305 [math.OC], 10.1137/16M1072656, 1–39.
  • [29] Murat, F. (1978) Compacit´e par compensation. Ann. Scuola Norm. Sup. Pisa. Cl. Scic. Fis. Mat. 5, 481–507.
  • [30] Orsina, L. (2011) Elliptic Equations with Measure Data. Preprint, Sapienza University of Rome.
  • [31] Pedregal, P. (2019) On a remark of Tikhonov regularization in optimal control under PDEs. European Journal of Applied Mathematics 30 (to appear).
  • [32] Prignet, A. (1995) Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rend. Mat. Appl. VII. 15 (3), 321–337.
  • [33] Radulescu, V. D. and Repovˇs, D. D. (2015) Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. CRC Press, New York.
  • [34] Roubıcek, T. (2013) Nonlinear Partial Differential Equations with Applications. Birkh¨auser, Boston.
  • [35] Ruzicka, M. (2000) Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math., 1748, Springer-Verlag, Berlin.
  • [36] Stampacchia, G. (1966) Equations Elliptiques du Second Ordre a Coefficients Discontinus. Les Presses de Universit´e de Montr´eal.
  • [37] Zhikov, V.V. (1997) On some variational problems. Russian J. Math. Phys. 5 (1), 105–116.
  • [38] Zhikov, V.V. (2008a) Existence theorem for some pairs of coupled elliptic equations. Russian Acad. Sci. Dokl. (Math.) 77 (1), 80–84.
  • [39] Zhikov, V.V. (2008b) Solvability of the three-dimensional thermistor problem. Proceedings of the Steklov Institute of Mathematics 281, 98–111.
  • [40] Zhikov, V.V. (2009) On the technique for passing to the limit in nonlinear elliptic problems. Functional Analysis and its Appl. 43 (2), 96–112.
  • [41] Zhikov, V.V. (2010) On the weak convergence of fluxes to flux. Russian Acad. Sci. Dokl. (Math.) 81 (1), 58–62.
  • [42] Zhikov, V.V. (2011) On variational problems and nonlinear elliptic equations with nonstandard growth conditions. Journal of Mathematical Sciences 173 (5), 463–570.
  • [43] Zhikov, V.V. and Pastukhova, S. E. (2008) Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent. Mat. Sb. 199 (12), 19–52.
  • [44] Zhou, S. and Westbrook, D.R. (1997) Numerical solution of the thermistor equations. J. of Computational and Applied Mathematics 79, 101–118.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3ee9f65-7b08-47cc-a37c-c21e2b2f1358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.