Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, metallic-ceramic composites were fabricated, with an equimolar high-entropy AlCoCuFeNi alloy as the matrix, and tungsten carbide WC (5 and 10% by volume) as the reinforcing phase. Induction melting and arc melting techniques were used for composite preparation. The metallic matrix of the composite exhibited a two- phase structure consisting of FCC and BCC solid solutions. Microscopic investigations revealed a dendritic micro- structure of the matrix, in which the WC particles were distributed non-homogeneously, regardless of the melting method. Strong precipitation of the chemical composition in the matrix was observed, with interdendritic regions enriched in copper and dendrites enriched in aluminium, nickel and iron. Additionally, besides WC particles, two types of precipitates, with various morphology, were observed in the matrix. The addition of tungsten carbide particles re- sulted in an increase in the composite hardness from approximately 273 HV for the high-entropy alloy to as high as 332 HV for the composite. The appearance of the precipitates can be attributed to the chemical reaction between the liquid matrix and WC, resulting in the formation of complex carbides.
Czasopismo
Rocznik
Tom
Strony
75--81
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
Bibliografia
- [1] Yeh J.‐W., Chen S.‐K., Lin S.‐J., Gan J.‐Y., Chin T.‐S., Shun T.‐T., et al. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv Eng Mater 2004;6:299 303. https://doi.org/10.1002/adem.200300567.
- [2] Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y., editors. High-Entropy Alloys. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319 27013-5.
- [3] Miracle D., Miller J., Senkov O., Woodward C., Uchic M., Tiley J. Exploration and Development of High Entropy Alloys for Structural Applications. Entropy 2014;16:494–525. https://doi.org/10.3390/e16010494.
- [4] Li W., Xie D., Li D., Zhang Y., Gao Y., Liaw P. K. Me chanical behavior of high-entropy alloys. Prog Mater Sci 2021;118:100777. https://doi.org/10.1016/j.pmatsci. 2021.100777.
- [5] Yeh J.-W. Recent progress in high-entropy alloys. Ann Chim Sci Matér 2006;31:633-48. https://doi.org/10.3166/ acsm.31.633-648.
- [6] Wang K., Yan Y., Xiong Y., Zhao S., Chen D., Woller K. B. Enhanced radiation resistance of W-based HEA under helium-ion irradiation conditions. J Nucl Mater 2024;588:154761. https://doi.org/10.1016/j.jnucmat. 2023.154761.
- [7] Mackova A., Havránek V., Mikšová R., Fernandes S., Matejicek J., Hadraba H., et al. Radiation damage evo lution in High Entropy Alloys (HEAs) caused by 3-5 MeV Au and 5 MeV Cu ions in a broad range of dpa in connection to mechanical properties and internal morphology. Nucl Mater Energy 2023;37:101510. https://doi.org/10.1016/j.nme.2023.101510.
- [8] Liu Y., Pu L., Yang Y., He Q., Zhou Z., Tan C., et al. A high-entropy alloy as very low melting point solder for advanced electronic packaging. Mater Today Adv 2020;7:100101. https://doi.org/10.1016/j.mtadv.2020. 100101.
- [9] Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011;19:698-706. https://doi.org/10.1016/ j.intermet.2011.01.004.
- [10] Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: challenges and prospects. Mater Today 2016;19:349-62. https://doi.org/10.1016/j.mattod.2015. 11.026.
- [11] Feng J., Tang Y., Liu J., Zhang P., Liu C., Wang L. Bio high entropy alloys: Progress, challenges, and opportu nities. Front Bioeng Biotechnol 2022;10:977282. https://doi.org/10.3389/fbioe.2022.977282.
- [12] Li Z., Fu P., Hong C., Chang F., Dai P. Tribological behavior of Ti(C, N)-TiB2 composite cermets using FeCoCrNiAl high entropy alloys as binder over a wide range of temperatures. Mater Today Commun 2021;26:102095. https://doi.org/10.1016/j.mtcomm. 2021.102095.
- [13] Yadav S., Zhang Q., Behera A., Haridas R. S., Agrawal P., Gong J., et al. Role of binder phase on the microstructure and mechanical properties of a mechanically alloyed and spark plasma sintered WC-FCC HEA compo sites. J Alloys Compd 2021;877:160265. https://doi.org/ 10.1016/j.jallcom.2021.160265.
- [14] Liu B., Wang J., Chen J., Fang Q., Liu Y. Ultra-High Strength TiC/Refractory High-Entropy-Alloy Compo site Prepared by Powder Metallurgy. JOM 2017;69:651-6. 2267-0. https://doi.org/10.1007/s11837-017 [15] Matusiak K., Berent K., Marciszko M., Cieslak J. The experimental and theoretical study on influence of Al and Cu contents on phase abundance changes in Al Cu FeCrNiCo HEA system. J Alloys Compd 2019; 790:837–46. https://doi.org/10.1016/j.jallcom.2019.03.162.
- [16] Beyramali Kivy M., Asle Zaeem M., Lekakh S. Investigating phase formations in cast AlFeCoNiCu high en tropy alloys by combination of computational modeling and experiments. Mater Des 2017;127:224–32. https://doi.org/10.1016/j.matdes.2017.04.086.
- [17] Guo S., Ng C., Lu J., Liu C. T. Effect of valence electron concentration on stability of fcc or bcc phase in high en tropy alloys. J Appl Phys 2011;109:103505. https://doi.org/10.1063/1.3587228.
- [18] Priputen P., Noga P., Novaković M., Potočnik J., Antušek A., Bujdák R., et al. Unconventional order/disorder behaviour in Al-Co-Cu-Fe-Ni multi-principal element alloys after casting and annealing. Intermetallics 2023;162:108016. https://doi.org/10.1016/j.intermet. 2023.108016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3ee2d52-ff34-4d7c-b8f6-62da10b8048a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.