PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical study about tension properties of novel hierarchical reentrant honeycomb structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study designed and analyzed three novel hierarchical reentrant honeycomb structures, composed of nested subunits with varying Poisson’s ratio characteristics, to evaluate their tensile performance through simulations and experiments. The results show that all three structures exhibit the negative Poisson’s ratio under tensile loading in both axial directions, with the subunits’ Poisson’s ratios influencing the overall Poisson’s ratio of the structure. The CH structure demonstrates higher stiffness under Y -axis loading, while the SRH structure exhibits higher stiffness under X-axis loading. In terms of deformation, the CH structure shows greater flexibility compared to the other two. The SRH structure consistently maintains an intermediate tensile strength among the three.
Rocznik
Strony
217--226
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
  • Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
Bibliografia
  • 1. Ahmed, N. & Xue, P. (2019). Governing the in-plane axial crushing of honeycomb with regular hexagonal symmetric division cells using cross-hinge inserts. International Journal of Mechanical Sciences, 161–162, Article 105062. https://doi.org/10.1016/j.ijmecsci.2019.105062
  • 2. Boldrin, L., Hummel, S., Scarpa, F., Di Maio, D., Lira, C., Ruzzene, M., Remillat, C.D.L., Lim, T.C., Rajasekaran, R., & Patsias, S. (2016). Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Composite Structures, 149, 114–124. https://doi.org/10.1016/j.compstruct.2016.03.044
  • 3. Chen, Y., Li, T., Jia, Z., Scarpa, F., Yao, C.W., & Wang, L. (2018). 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials & Design, 137, 226–234. https://doi.org/10.1016/j.matdes.2017.10.028
  • 4. Gong, X., Ren, C., Sun, J., Zhang, P., Du, L., & Xie, F. (2022). 3D Zero Poisson’s Ratio honeycomb structure for morphing wing applications. Biomimetics, 7 (4), 198. https://doi.org/10.3390/ biomimetics7040198
  • 5. Heo, H., Ju, J., & Kim, D.M. (2013). Compliant cellular structures: Application to a passive morphing airfoil. Composite Structures, 106, 560–569. https://doi.org/10.1016/j.compstruct.2013.07.013
  • 6. Hu, L.L., Zhou, M.Z., & Deng, H. (2019). Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Composite Structures, 207, 323–330. https://doi.org/10.1016/ j.compstruct.2018.09.066
  • 7. Ingrole, A., Hao, A., & Liang, R. (2017). Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Materials & Design, 117, 72–83. https://doi.org/10.1016/ j.matdes.2016.12.067
  • 8. Jin, X., Wang, Z., Ning, J., Xiao, G., Liu, E., & Shu, X. (2016). Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading. Composites Part B: Engineering, 106, 206–217. https://doi.org/10.1016/j.compositesb.2016.09.037
  • 9. Ju, J. & Summers, J.D. (2011). Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Materials & Design, 32 (2), 512–524. https://doi.org/10.1016/ j.matdes.2010.08.029
  • 10. Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J.H., & Bleck, W. (2018). Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials & Design, 145, 205–217. https://doi.org/10.1016/j.matdes.2018.02.062
  • 11. Lee, W., Jeong, Y., Yoo, J., Huh, H., Park, S.J., Park, S.H., & Yoon, J. (2019). Effect of auxetic structures on crash behavior of cylindrical tube. Composite Structures, 208, 836–846. https://doi.org/ 10.1016/j.compstruct.2018.10.068
  • 12. Liu, H., Zhang, E.T., Wang, G., & Ng, B.F. (2022). In-plane crushing behavior and energy absorption of a novel graded honeycomb from hierarchical architecture. International Journal of Mechanical Sciences, 221, Article 107202. https://doi.org/10.1016/j.ijmecsci.2022.107202
  • 13. Liu, J., Chen, W., Hao, H., & Wang, Z. (2021). In-plane crushing behaviors of hexagonal honeycombs with different Poisson’s ratio induced by topological diversity. Thin-Walled Structures, 159, Article 107223. https://doi.org/10.1016/j.tws.2020.107223
  • 14. Liu, W., Wang, N., Luo, T., & Lin, Z. (2016). In-plane dynamic crushing of re-entrant auxetic cellular structure. Materials & Design, 100, 84–91. https://doi.org/10.1016/j.matdes.2016.03.086
  • 15. Patel, P., Bhingole, P.P., & Makwana, D. (2018). Manufacturing, characterization and applications of lightweight metallic foams for structural applications: Review. Materials Today: Proceedings, 5 (9), 20391–20402. https://doi.org/10.1016/j.matpr.2018.06.414
  • 16. Photiou, D., Prastiti, N., Sarris, E., & Constantinides, G. (2016). On the conical indentation response of elastic auxetic materials: Effects of Poisson’s ratio, contact friction and cone angle. International Journal of Solids and Structures, 81, 33–42. https://doi.org/10.1016/j.ijsolstr.2015.10.020
  • 17. Reznikov, N., Bilton, M., Lari, L., Stevens, M.M., & Kröger, R. (2018). Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 360 (6388), Article eaao2189. https://doi.org/ 10.1126/science.aao2189
  • 18. Shukla, S. & Behera, B.K. (2022). Auxetic fibrous structures and their composites: A review. Composite Structures, 290, Article 115530. https://doi.org/10.1016/j.compstruct.2022.115530
  • 19. Solak, A., Așcıoglu Temizta¸s, B., & Bolat, B. (2023). Numerical investigation of the mechanical behavior of the vertical stabilizer leading edge with wavy honeycomb sandwich structure under bird strike. Journal of Sandwich Structures & Materials, 25 (3), 387–400. https://doi.org/10.1177/ 10996362221146124
  • 20. Wang, Z. (2019). Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering, 166, 731–741. https://doi.org/10.1016/j.compositesb.2019.02.011
  • 21. Xiao, D., Chen, X., Li, Y., Wu, W., & Fang, D. (2019a). The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis. Materials & Design, 176, Article 107840. https://doi.org/10.1016/ j.matdes.2019.107840
  • 22. Xiao, D., Dong, Z., Li, Y., Wu, W., & Fang, D. (2019b). Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis. Materials Science and Engineering: A, 758, 163–171. https://doi.org/10.1016/j.msea.2019.04.116
  • 23. Xu, P., Lan, X., Zeng, C., Zhang, X., Zhao, H., Leng, J., & Liu Y. (2024). Compression behavior of 4D printed metamaterials with various Poisson’s ratios. International Journal of Mechanical Sciences, 264, Article 108819. https://doi.org/10.1016/j.ijmecsci.2023.108819
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3e91ed3-3ff4-41ab-9410-04956d321275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.