PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the possibilities of using CrN+a-C:H:W coatings to mitigate fretting wear in push fit joints operating in rotational bending conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza możliwości zastosowania wybranych powłok diamond-like-carbon celem ograniczenia zużycia frettingowego w połączeniach wciskowych pracujących w warunkach zginania obrotowego
Języki publikacji
EN
Abstrakty
EN
In this article, the results of wear tests of a push fit joint operating in rotational bending conditions have been presented. The assumed operation conditions were similar to those for a real rail vehicle wheel set. Samples made of uncoated C45 steel and those in which shafts were covered with a CrN+a-C:H:W coating were analysed. The push fit joint was loaded with 550 N, and it completed 8x106 cycles. Following wear tests, the macroscopic and microscopic observations of the shaft top layer were conducted to determine the intensity of fretting wear development. The former demonstrated that, in the case of uncoated shafts, wear occurs on either side of the joint, in the form of a maximum 2 mm wide ring. The use of protective coatings significantly reduced damage to the shaft top layer. Traces of fretting wear occur occasionally at the shaft circumference and affect small areas. The microscopic observations and EDS analysis of the chemical composition of the areas affected by fretting demonstrated mainly wear in the form of the build-up of material originating from, first of all, the shearing of sleeve top layer micro-irregularities that underwent plastic deformation and then oxidation.
PL
W artykule zaprezentowano wyniki badań zużyciowych połączenia wciskowego pracującego w warunkach zginania obrotowego. Przyjęte warunki pracy zbliżone były do warunków pracy rzeczywistego zestawu kołowego pojazdów szynowych. Analizie poddano próbki wykonane ze stali C45 bez powłoki oraz próbki, w których wały pokryto powłoką CrN+a-C:H:W. Połączenie wciskowe obciążone zostało siłą 550N i wykonało 8x106 cykli. Po badaniach zużyciowych przeprowadzono obserwacje makroskopowe i mikroskopowe warstwy wierzchniej wałów w celu określenia intensywności rozwoju zużycia frettingowego. Te pierwsze wykazały, że w przypadku wałów bez powłoki zużycie występuje po obu stronach połączenia w postaci pierścienia o maksymalnej szerokości 2 mm. Zastosowanie powłok ochronnych zdecydowanie zmniejszyło uszkodzenia warstwy wierzchniej wałów. Ślady zużycia frettingowego występują sporadycznie na obwodzie wałka i zajmują niewielkie obszary. Obserwacje mikroskopowe oraz analiza EDS składu chemicznego obszarów zajętych przez zjawisko frettingu wykazały w głównej mierze zużycie w postaci nalepów materiału pochodzącego przede wszystkim ze ścinania mikronierówności warstwy wierzchniej tulei, które uległy deformacjom plastycznym, a następnie utlenieniu.
Czasopismo
Rocznik
Tom
Strony
45--55
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • State Higher Vocational School in Nowy Sącz, 1a Zamenhofa street, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. Madej M., Ozimina D.: The tribological properties of diamond–like carbon coatings under ionic liquids lubrication. Tribology 4 (2014), pp. 73–84.
  • 2. Aisenberg S., Chabot R.: Ion-beam deposition of thin film soft diamond like carbon. Journal Applied Physics. 42 (1971), pp. 2953–2956.
  • 3. Igartua A., Berriozabal E., Nevshupa R., Roman E., Pagano F., Pleth Nelson L., Louring S., Muntada L.: Screening of diamond-like carbon coatings in search of a prospective solid lubricant suitable for both atmosphere and high vacuum applications. Tribology International 114 (2017), pp. 192–200.
  • 4. Mabuchi Y., Higuchi T., Yoshimura D., Murashima M., Kousaka H., Umehara N.: Influence of carbon black in engine oil on wear of H-free diamond-like carbon coatings. Tribology International 73 (2014), pp. 138–147.
  • 5. Zhang Y., Polychronopoulou K., Humood M., Polycarpou A. A.: High temperature nanotribology of ultra-thin hydrogenated amorphous carbon coatings. Carbon 123 (2017), pp. 112–121.
  • 6. Martini C., Ceschini L., Casadei B., Boromei I., Guion J. B.: Dry sliding behaviour of hydrogenated amorphous carbon (a-C:H) coatings on Ti-6Al-4V. Wear 271 (2011), pp. 2025–2036.
  • 7. Makowski S., Schaller F., Weihnacht V., Englberger G., Becker M.: Tribochemical induced wear and ultra-low friction of superhard ta-C coatings. Wear 392–393 (2017), pp. 139–151.
  • 8. Wang Q., Zhou F., Wang C., Yuen Muk-Fung, Wang M., Qian T., Matsumoto M., Yan J.: Comparison of tribological and electrochemical properties of TiN, CrN, TiAlN and a-C:H coatings in simulated body fluid. Materials Chemistry and Physics 158 (2015), pp. 74–81.
  • 9. Gies A., Chudoba T., Schwarzer N., Becker J.: Influence of the coating structure of a-C:H:W coatings on their wear-performance: A theoretical approach and its practical confirmation. Surface & Coatings Technology 237 (2013), pp. 299–304.
  • 10. Dowling D. P., Kola P. V., Donnelly K., Kelly T. C., Brumitt K., Lloyd L., Eloy R., Therin M., Weill N.: Evaluation of diamond–like carbon–coated orthopaedic implants. Diamond and Related Materials Volume 6, Issues 2–4 (1997), pp. 390–393.
  • 11. Hauert R.: A review of modified DLC coatings for biological applications. Diamond and Related Materials Volume 12, Issues 3–7 (2003), pp. 583–589.
  • 12. Hing H.A., Choudhury D., Nine M. J., Osman N. A. A.: Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 15 (2014), pp. 1–21.
  • 13. Bill R. C. Fretting wear and fretting fatigue – How are they related? Journal of Lubrication Technology 1983; 105 issue 2, pp. 230–238.
  • 14. Guo X., Lai P., Tang L., Wang J., Zhang L.: Effects of sliding amplitude and normal load on the fretting wear behavior of alloy 690 tube exposed to high temperature water. Tribology International 116 (2017), pp. 155–163.
  • 15. Majzoobi G. H., Abbasi F.: On the effect of shot–peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading. Surface and Coatings Technology 328 (2017), pp. 292–303.
  • 16. Li X., Yang J., Li M., Zuo Z.: An investigation on fretting fatigue mechanism under complex cyclic loading conditions. International Journal of Fatigue 88 (2016), pp. 227–235.
  • 17. Lu W., Zhang P., Liu X., Zhai W., Zhou M., Luo J., Zeng W., Jiang X.: Influence of surface topography on torsional fretting wear under flat-on-flat contact. Tribology International 109 (2017), pp. 367–372.
  • 18. Budinski K. G.: Effect of hardness differential on metal-to-metal fretting damage. Wear volume 301 issues 1–2 (2013), pp. 501–507.
  • 19. Lemm J. D., Warmuth A. R. Pearson S R., Shipway P. H.: The influence of surface hardness on the fretting wear of steel pairs – Its role in debris retention in the contact. Tribology International 81 (2015), pp. 258–266.
  • 20. Kesavan D., Done V., Sridhar M.R., Billing R., Nelias D.: High temperature fretting wear prediction of Exhaust valve material. Tribology International 100 (2016), pp. 280–286.
  • 21. Cai Z., Zhu M., Shen H., Zhou Z., Jin X.: Torsional fretting wear behaviour of 7075 aluminium alloy in various relative humidity environments. Wear volume 267, issues 1–4 (2009), pp. 330–339.
  • 22. Zhang P., Liu X., Lu W., Zhai W., Zhou M., Wang J.: Fretting wear behavior of CuNiAl against 42CrMo4 under different lubrication conditions. Tribology International 117 (2018), pp. 59–67.
  • 23. English R., Ashkanfar A., Rothwell G.: A computational approach to fretting wear prediction at the head-stem taper junction of total hip replacements. Wear 338–339 (2015), pp. 210–220.
  • 24. Zasińska K., Seramak T., Łubiński J. I.: Comparison of the abrasion resistance of the selected biomaterials for friction components in orthopedic endoprostheses. Tribology 6 (2015), pp. 187–198.
  • 25. Gil F. J., Canedo R., Padrós A., Bañeres M. V., Arano J. M.: Fretting corrosion behaviour of ball-and-socket joint on dental implants with different prosthodontic alloys. Bio-Medical Materials and Engineering 13 (2003), pp. 27–34.
  • 26. Kralya V. O., Molyar O. H., Trofimov V. A., Khimko A. M.: Defects of steel units of the high-lift devices of aircraft wings caused by fretting corrosion. Materials Science 46 (2010), pp. 108–114.
  • 27. Lee B. –W., Suh J., Lee H., Kim T.–G.: Investigations on fretting fatigue in aircraft engine compressor blade. Engineering Failure Analysis 48 issue 7 (2011, pp. 1900–1908.
  • 28. Sujata M., Madan M., Raghavendra K., Bhaumik S. K.: Fretting Fatigue in Aircraft Components Made of Ti–Al–V Alloys. Procedia Engineering 55 (2013, pp. 481–486.
  • 29. Giacco del M., Weisenburger A., Zimmermann P. S. F., Lang F., Muller J. G.: Experimental equipment for fretting corrosion simulation in heavy liquid metals for nuclear applications. Wear 280–281 (2015, pp. 46–53.
  • 30. Blau P. J.: A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods. Wear 313 issues 1–2 (2014), pp. 89–96.
  • 31. Fei Xue, Zhao-Xi Wang, Wen-Sheng Zhao, Xiao-Liang Zhang Bao-Ping Qu LiuWei: Fretting fatigue crack analysis of the turbine blade from nuclear power plant. Engineering Failure Analysis 44 (2014, pp. 299–305.
  • 32. Wang D., Zhang D., Se S.: Effect of terminal mass on fretting and fatigue parameters of a hoisting rope Turing a lifting cycle in coal mine. Engineering Failure Analysis 36 (2014), pp. 407–422.
  • 33. Wang D., Zhang D., Zhao W., Ge S.: Quantitative analyses of fretting fatigue damages of mine rope wires in different corrosive media. Materials Science and Engineering: A 596 (2014, pp. 80–88.
  • 34. Collini L., Degasperi F.: MRT detection of fretting fatigue cracks in a cableway locked coil rope. Case Studies in Nondestructive Testing and Evaluation 2, (2014), pp. 64–70.
  • 35. Panda B., Balasubramaniam R., Mahapatra S., Dwivedi G.: Fretting and fretting corrosion behavior of novel micro alloyed rail steels. Wear 267 issues 9–10 (2009), pp. 1702–1708.
  • 36. Zheng J. F., Luo J., Mo J. L., Peng J. F., Jin X. S., Zhu M. H.: Fretting wear behaviors of a railway axle steel. Tribology International 43 issues 5–6, (2010), pp. 906–911.
  • 37. Guzowski S., Michnej M.: Influence of technological methods increasing surface layer durability on axles fretting wear in railway wheel sets. Eksploatacja i Niezawodnosc – Maintenance and Reliability 18 issue 1 (2016), pp. 1–9
  • 38. Zhang Y., Lu L., Gong Y., Zhang J., Zeng D.: Fretting wear–induced evolution of surface damage in press–fitted shaft. Wear 384–385 (2017), pp. 131–141.
  • 39. Guzowski S.: Analysis of fretting wear in clamped joints on example of rail vehicle wheelset axles. Krakow: Cracow University of Technology Press, 2003.
  • 40. Guzowski S.: Simulation of axle set fretting fatigue in model testing. The Proceedings of the 10th Congress on Material Testing vol. 2, Budapest 1991, pp. 478–483.
  • 41. Kowalski S.: Application of dimensional analysis in the fretting wear studies. Journal of the Balkan Tribological Association 2016; 22(4), pp. 3076–3088.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3e4593b-0a5f-4479-8dad-ff461d5da395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.