PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hydrocarbons removal from underground coal gasification water by organic adsorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main problems in the case of the undergorund coal gasificiation process is the possible pollution of surrounding aquifers. The underground gasification cavity is a source of both gaseous and liquid pollutants and these are mainly aromatic hydrocarbons, phenols, heavy metals and others. In order to prevent underground water from pollution a permeable reactive barrier was proposed. The filling was granulated activated carbon and SPILL-SORB (peat) – two commonly available sorbents adequate for hydrocarbons removal. The wastewater (synthetic solution which simulated groundwater contaminated with the UCG products) was prepared by mixing distilled water with desired amounts of substances such as phenols, benzene, toluene, xylene, naphthalene etc. Batch tests were performed in order to measure sorption of phenols and benzene from the post-UCG water on the mentioned sorbents. Experimental results were fitted with linear and non-linear Freundlich and Langmuir isotherm models. The obtained data showed that removal of phenols and benzene in case of GAC was much more efficient. However, sorption was lower than in the case of literature data and can be explained by complex composition of the solution and pre-treatment of the samples. The Langmuir model gave a better fit in the case of GAC, whereas Freundlich isotherm model was matching the data better in case of SPILL-SORB.
Rocznik
Strony
289--298
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Faculty of Mining and Geology, Silesian University of Technology, Gliwice, Poland
autor
  • Faculty of Mining and Geology, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. DABROWSKI A., PODKOSCIELNY P., HUBICKI Z., BARCZAK M., 2005, Adsorption of phenolic compounds by activated carbon—a critical review, Chemosphere 58, 1049–1070.
  • 2. ELBAR Katowice MSDS (Material Safety Data Sheet), 2013, WACC 8X30, www.wegiel-aktywny.pl, accessed June 2013.
  • 3. GAVASKAR A., GUPTA N., SASS B., JANOSY R., HICKS J., 2000, Design guidance for application of permeable reactive barriers for groundwater remediation. Florida, Battelle Columbus Operations, Ohio 2000.
  • 4. GAVASKAR A., SASS B, GUPTA N., DRESCHER E., YOON W.S., SMINCHAK J., HICKS J., CONDIT W., 2003, Evaluating the longevity and hydraulic performance of Permeable Reactive Barriers at Department of Defence Sites. Battelle Columbus Operations Ohio; 2003.
  • 5. GULGONUL I., 2012. Evaluation of Turkish bentonite for removal of deys from textile wastewaters, Physicocheical Problems of Mineral Processing, 48(2), 2012, 369−380.
  • 6. HUMENICK M. J., 1984, Water pollution control for underground coal gasification. Journal of Energy Engineering, 110(2), 100–112.
  • 7. HUMENICK M.J., MATTOX C.F., 1980, Organic groundwater contaminants from underground coal gasification. In Situ, 4(2), 78–85.
  • 8. ITRC (Interstate Technology & Regulatory Council), 2011, Permeable Reactive Barrier: Technology Update, PRB-5. Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Technology Update Team. Washington: http://www.itrcweb.org.
  • 9. KAPUSTA K., STAŃCZYK K., 2011, Pollution of water during underground coal gasification of hard coal and lignite. Fuel, 90(2011), 1927–1934
  • 10. KAPUSTA K., STAŃCZYK K., KORCZAK K., PANKIEWICZ M., WIATOWSKI M., 2010, Wybrane aspekty oddziaływania procesu podziemnego zgazowania węgla na środowisko wodne, Prace Naukowe GIG, Górnictwo i Środowisko, nr 4, Główny Instytut Górnictwa Katowice 2010 .
  • 11. KUMAR V.K., 2006, Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon. Journal of Hazardous Materials, Vol. 136, Iss. 2, 197–202.
  • 12. LIU SHUQIN, WANG YONGTAO, YU LI, OAKEY JOHN., 2006, Volatilization of mercury, arsenic and selenium during underground coal gasification, Fuel, Vol. 85, Iss. 10–11, July–August 2006, 1550–1558.
  • 13. MAAROF H.I., HAMEED B. H., LATIF A.A., 2004, Adsorption Isotherms For Phenol Onto Activated Carbon. ASEAN Journal of Chemical Engineering, 4 (1), 70–76.
  • 14. MCKAY G., BINO M.J., ALTAMEMI A.R.,1985 , The adsorption of various pollutants from aqueous solutions on to activated carbon. Water Research, Vol. 19, Iss. 4, 1985, 491–495.
  • 15. MEGGYES T., HOLZLOHNER U., AUGUST H., 1998, A multidisciplinary approach to improving the safety and durability of landfill barriers. In Contaminated and derelict land (Sarsby R.W. (ed)), Kraków. Thomas Telford, London, 41-–420.
  • 16. MEGGYES T., SIMON F.G., DEBRECZENI E., 2000,New developments in reactive barrier techlology, The exploitation of natural resources and the consequences, Greek International Symposium on Geotechnics Related to the European Environment, Berlin.
  • 17. PULS R.W., POWELL M.R., BLOWES D.W., GILLHAM R. W., SCHULTZ D., SIVAVEC T., VOGAN J. L., POWELL P. D., 1998, Permeable reactive barrier technologies for contaminant remediation, Washington: United States Environmental Protection Agency.
  • 18. ROEHL K.E., MEGGYES T., SIMON F.G. STEWART D.I., 2005, Long-term Performance of Permeable Reactive Barriers, Trace metals and other contaminants in the environment, Vol. 7, Elsevier 2005.
  • 19. SPILL-SORBMSDS (Material Safety Data Sheet), 2012, www.spillsorb.com, accessed June 2013
  • 20. STUERNER D.H., DOUGLAS J.N., MORRIS C.J., 1982, Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. Environmental Science Technology, 16, 582–587.
  • 21. SUPONIK T., 2011, Optimization of the PRB (Permeable Reactive Barriers) parameters for selected area of dumping site, The Publishing House of the Silesian University of Technology (monographs no 328), Gliwice 2011.
  • 22. SUPONIK T., 2013, Groundwater treatment with the use of zero-valent iron in the Permeable Reactive Barrier Technology, Physicochemical Problems of Mineral Processing, Vol. 49, Iss. 1, 2013, 13–23,
  • 23. SUPONIK T., LUTYNSKI M., 2009, Possibility of Using Permeable Reactive Barrier in Two Selected Dumping Sites. Archives Of Environmental Protection, Vol. 35, No. 3, 109–122.
  • 24. TESSMER C.H., VIDIC R.D., URANOWSKI L.J., 1997, Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols, Environmental Science Technology, 1997, 31 (7), 1872–1878.
  • 25. U.S. DEPARTMENT OF ENERGY, 1998, Research and Application of Permeable Reactive Barriers, Grand Junction Office 1998.
  • 26. VIJANA L.E., NEAGU M.,2012, Adsorption isotherms of phenol and aniline on activated carbon, Revue Roumaine de Chimie, 57(2), 85–93.
  • 27. VILLACANAS F., MANUEL FERNANDO R. PEREIRA M.F.R., ORFAO J.J.M., FIGUEIREDO J.L., 2006, Adsorption of simple aromatic compounds on activated carbons, Journal of Colloid and Interface Science 293 (2006), 128–136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3e38aff-a7d6-4cb2-bf66-61f71efda8ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.