PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Coalification as a process determining the methane adsorption ability of coal seams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of a study of methane adsorption on coal samples with various degrees of metamorphism, coming from the Polish and Czech parts of the Upper Silesian Coal Basin (USCB). The range of coalification of the samples was from bituminous with vitrinite reflectance Ro equal to about 0.5% to para-anthracite coals with Ro equal to over 2%. The methane adsorption capacity was determined at the temperature 303 K for each of the studied coal seams. Methane adsorption isotherms were approximated using the Langmuir model. The relationship between the Langmuir isotherm parameters (am and PL) and the degree of coalification was presented. It was shown that the degree of coalification of the coal substance affects the adsorption ability of coal with respect to methane and determines the value of the Langmuir isotherm parameters. The study was conducted in order to present the distribution of adsorption capacity of Upper Silesian coals in relation to improving work safety in active mines as well as designing technologies that use coal bed methane (CBM) from balance and off-balance resources.
Rocznik
Strony
181--195
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str., 30-059 Krakow, Poland
  • Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str., 30-059 Krakow, Poland
Bibliografia
  • [1] B. Dutka, K. Godyń. Predicting variability of methane pressure with depth of coal seam. Przemysł Chemiczny 97 (8), 1344-1348 (2018). DOI: https://doi.org/10.15199/62.2018.8.20.
  • [2] C. Gao, D. Liu, Z. Li, Y. Cai, Fluid Performance in Coal Reservoirs: A Comprehensive Review Geofluids, 2021 Article ID 6611075, 33 (2021). DOI: https://doi.org/10.1155/2021/6611075.
  • [3] T .A. Moore. Coalbed methane: A review. International Journal of Coal Geology 101, 36-81 (2012). DOI: https://doi.org/10.1016/j.coal.2012.05.011.
  • [4] https://www.cire.pl, accessed: 01.04.2021.
  • [5] H . Paszcza. Ocena stanu zasobów węgla kamiennego w Polsce z uwzględnieniem parametrów jakościowych i warunków zalegania w aspekcie zapewnienia bezpieczeństwa energetycznego kraju. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk. 83, 147-162 (2012).
  • [6] Raport roczny o stanie podstawowych zagrożeń naturalnych i technicznych w górnictwie węgla kamiennego. Praca zbiorowa pod kierunkiem dr. hab. inż. Józefa Kabiesza. Główny Instytut Górnictwa, Katowice 2019 (2018).
  • [7] R . Kandiyoti, A. Herod, K. Bartle, T. Morgan, Chapter 2 – Solid fuels: Origins and characterization. Solid Fuels and Heavy Hydrocarbon Liquids. Thermal Characterization and Analysis, Second Edition, Elsevier Science (2017).
  • [8] M. M. Mohanty, B.K. Pal, Sorption behaviour of coal for implication in coal bed methane an overview. International Journal of Mining Science and Technology 27 (2), 307-314 (2017). DOI: https://doi.org/10.1016/j.ijmst.2017.01.014.
  • [9] B. Dutka, CO2 and CH4 sorption properties of granular coal briquettes under in situ states. Fuel, 247, 228-236, (2019). DOI: https://doi.org/10.1016/j.fuel.2019.03.037.
  • [10] K. Godyń, B. Dutka, M. Chuchro, M. Młynarczuk, Synergy of Parameters Determining the Optimal Properties of Coal as a Natural Sorbent. Energies 13 (8), 1967 (2020). DOI: https://doi.org/10.3390/en13081967.
  • [11] K. Czerw, P. Baran, J. Szczurowski, K. Zarębska, Sorption and Desorption of CO2 and CH4 in Vitrinite-and Inertinite- Rich Polish Low-Rank Coal. Natural Resources Research 30 (3), 1-14 (2020). DOI: https://doi.org/10.1007/ s11053-020-09715-2.
  • [12] S. Kędzior, Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology 80, 20-34 (2009). DOI: https://doi.org/10.1016/j.coal.2009.08.003.
  • [13] Y . Cheng, H. Jiang, X. Zhang, J. Cui, C. Song, X. Li, Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology 4 (2), 129-146 (2017). DOI: https://doi.org/10.1007/s40789-017-0161-6.
  • [14] K. Godyń, B. Dutka, The impact of the degree of coalification on the sorption capacity of coals from the Zofiówka Monocline. Archives of Mining Sciences 63 (3), 727-746 (2018). DOI: https://doi.org/10.24425/12369.
  • [15] E. Stach, M.-Th. Mackowsky, M. Teichmuller, G.M. Taylor, D. Chandra, R. Teichmuller, Stach’s Textbook of Coal Petrology; Gebruder Borntraeger: Berlin/Stuttgart, Germany (1982).
  • [16] M. Manecki, M. Muszyński (red.), Przewodnik do petrografii. Kraków, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne (2008).
  • [17] M. Skiba, M. Młynarczuk. Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks. Materials 13 (23), 5422 (2020). DOI: https://doi.org/10.3390/ma13235422.
  • [18] Y . Gensterblum, A. Merkel, A. Busch, B.M. Krooss, High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture. International Journal of Coal Geology 118, 45-57 (2013). DOI: https://doi.org/10.1016/j.coal.2013.07.024.
  • [19] K. Godyń A. Kožušníková, Microhardness of Coal from Near-Fault Zones in Coal Seams Threatened with Gas- Geodynamic Phenomena, Upper Silesian Coal Basin, Poland. Energies 12 (9), 1756 (2019). DOI: https://doi. org/10.3390/en12091756.
  • [20] C. Laxminarayana, P. Crosdale, Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology 40 (4), 309-325 (1999). DOI: https://doi.org/10.1016/ S0166-5162(99) 00005-1.
  • [21] D. Prinz, W. Pyckhout-Hintzen, R. Littke, Development of the meso- and macroporous structure of coals with rank as analyzed with small angle neutron scattering and adsorption experiments. Fuel 83 (4-5), 547-556 (2004). DOI: https://doi.org/10.1016/j.fuel.2003.09.006.
  • [22] J. Dubiński, M. Turek, Szanse i zagrożenia rozwoju górnictwa węgla kamiennego w Polsce (Opportunities and Threats of Coal Mining in Poland). Wiadomości Górnicze 11, 626-633 (2012).
  • [23] P. Dutta, S. Bhowmik, S. Das, Methane and carbon dioxide sorption on a set of coals from India. International Journal of Coal Geology 85 (3-4), 289-299 (2011). DOI: https://doi.org/10.1016/j.coal.2010.12.004.
  • [24] W . Gabzdyl, Geologia złóż węgla: Złoża świata. Warszawa: Polska Agencja Ekologiczna (1994).
  • [25] https://www.geoportal.pgi.gov.pl, accessed: 12.12.2020.
  • [26] Z. Dembowski, General Information on the Upper Silesian Basin. Prace Instytutu Geologicznego 61, 9-22 (1972) [in Polish with English abstract].
  • [27] J. Jureczka, Nowe dane o charakterystyce litostratygraficznej kontaktu serii paralicznej i górnośląskiej serii piaskowcowej karbonu zachodniej części Górnośląskiego Zagłębia Węglowego. Materiały XI Sympozjum Geologia Formacji Węglonośnych Polski. Wyd. AGH, Kraków (1988).
  • [28] A . Kotas, Z. Buła, J. Jureczka, Problematyka podziału litostratygraficznego Górnośląskiej serii piaskowcowej karbonu GZW w świetle zasad kodeksu stratygraficznego. In: XI Sympozjum Geologia formacji węglonośnych Polski. AGH Kraków, Poland, 55-61. 30 (1988).
  • [29] M. Sivek, M. Dopita, M. Krůl, M. Čáslavský, J. Jirásek, Atlas of Chemical-Technological Properties of Coals in the Czech Part of the Upper Silesian Basin. 31 pp. Vysoká Škola Báňská – Technical University of Ostrava, Ostrava (2003).
  • [30] L. Hýlová, J. Jureczka, J. Jirásek, M. Sivek, J. Hotárková, The Petřkovice Member (Ostrava Formation, Mississippian) of the Upper Silesian Basin (Czech Republic and Poland). Int. J. Coal Geol. 106, 11-24 (2013). DOI: https://doi.org/10.1016/j.coal.2013.01.004.
  • [31] J. Jirásek, S. Opluštil, M. Sivek, M.D. Schmitz, H.A. Abels, Astronomical forcing of Carboniferous paralic sedimentary cycles in the Upper Silesian Basin, Czech Republic (Serpukhovian, latest Mississippian): New radiometric ages afford an astronomical age model for European biozonations and substages. Earth-Science Reviews 177, 715-741 (2018). DOI: https://doi.org/10.1016/j.earscirev.2017.12.005.
  • [32] Z . Klika, J. Serenčíšová, A. Kožušníková, I. Kolomazník, S. Študentová, J. Vontorová, Multivariate statistical assessment of coal properties. Fuel Process. Technol. 128, 119-127 (2014). DOI: https://doi.org/10.1016/j.fuproc.2014.06.029.
  • [33] UN ECE. International Classification of In-Seam Coals; ECE UN: Geneva, Switzerland; UN: New York, NY, USA, (1995).
  • [34] S. Hao, W. Chu, Q. Jiang, X. Yu, Methane adsorption characteristics on coal surface above critical temperature through Dubinin – Astakhov model and Langmuir model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 444, 104-113 (2014). DOI: https://doi.org/10.1016/j.colsurfa.2013.12.047.
  • [35] K . Probierz, M. Marcisz, A. Sobolewski, Rozpoznanie warunków geologicznych występowania węgla koksowego w rejonie Jastrzębia dla potrzeb projektu „Inteligentna Koksownia”. Biuletyn PIG 452, 245-256 (2012).
  • [36] D. Guo, X. Guo, The influence factors for gas adsorption with different ranks of coals. Adsorption Science & Technology 36 (3-4), 904-918 (2017). DOI: https://doi.org/10.1177/0263617417730186.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3e2a8dd-e51a-464d-8b3a-73877a93bb0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.