PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Warstwa ochronna ze strącanego biologicznie mikro-kalcytu na powierzchni tworzyw cementowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Protective effect of microbial calcite precipitation on the surface of cementitious materials
Języki publikacji
PL EN
Abstrakty
PL
Zaproponowano strącanie węglanu wapnia przez mikroorganizmy (bakterie) jako skuteczna metodę zabezpieczania tradycyjnych materiałów budowlanych (wapień, zaprawa, beton) przed degradacją spowodowaną wpływem różnych środowisk. Metoda polega na wywołanym bakteriami powstawaniu warstwy węglanu, zgodnego z powierzchnią wapienia lub betonu. Metoda ta ma szereg zalet w porównaniu do tradycyjnych technik i została opisana w artykule.
EN
Calcium carbonate precipitation produced by microorganisms (bacteria) has been proposed as an efficient method for the protection of the traditional construction materials (carbonate stone, mortar, concrete) from degradation due lo exposure to different environments. The method relies on the bacterially induced formation of a compatible carbonate layer precipitated on limestone or on concrete surface. The method exhibits several advantages with respect to traditional techniques, which are outlined and described in this paper.
Czasopismo
Rocznik
Strony
281--300
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Department of Engineering for Innovation, University of Salento, Lecce, Italy
Bibliografia
  • 1. C. Esposito Corcione, A. Previderio, M. Frigione, Kinetics characterization of a novel photopolymerizable siloxane-modified acrylic resin. Thermochimica Acta, 509, 56–61 (2010).
  • 2. C. Esposito Corcione, M. Frigione, Influence of stone particles on the rheological behavior of a novel photopolymerizable siloxane-modified acrylic resin. Journal of Applied Polymer Science, 122, 942–947 (2011).
  • 3. Esposito Corcione, C.; Frigione, M. UV-cured siloxane-modified acrylic coatings containing birifrangent calcarenitic stone particles: photo-calorimetric analysis and surface properties. Progress in Organic Coatings 2011, 72, 522–527.
  • 4. C. Esposito Corcione, M. Frigione, Factors influencing photo-curing kinetics of novel UV cured siloxane-modified acrylic coatings: oxygen inhibition and composition. Thermochimica Acta, 534, 21–27 (2012).
  • 5. C. Rodriguez-Navarro, M. Rodriguez-Gallego, K. Ben Chekroun, M. T. Gonzalez-Muñoz, Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied Environmental Microbiology, 69, 2182–2193 (2003).
  • 6. E. Vejmelková, P. Máca, M. Keppert, P. Rovnaníková, R. Cerný, Commercial renovation renders: Mechanical, Hygric, thermal and durability properties. Cement Wapno Beton, 78, 5, 288–298 (2011).
  • 7. A. Webster, E. May, Bioremediation of weathered-building stone surfaces. Trends in Biotechnology, 24, 255–260 (2006).
  • 8. W. De Muynck, K. Cox, N. De Belie, W. Verstraete, Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22, 875–885 (2008).
  • 9. S. Douglas, J. Beveridge, Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology, 26, 79-88 (1998).
  • 10. F. G. Ferris, Calcite Precipitation and Trace Metal Partitioning in Groundwater and the Vadose Zone. U.S. Department of Energy. Project Number: 70206, 1999.
  • 11. E. Boquet, A. Boronat, A. Ramos-Cormenzana, Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 246, 527–529 (1973).
  • 12. H. Knorre, W. Krumbein, Bacterial calcification. In: R. E. Riding, S. M. Awramik (eds.) Microbial sediments, pp. 25-31, Springer-Verlag: Berlin, Germany 2000.
  • 13. W. Stumm, J. J. Morgan, Aquatic Chemistry, 3rd ed.; John Wiley: New York, USA 1996.
  • 14. S. Castanier, G. Le Métayer-Levrel, J. P. Perthuisot, Ca-carbonates precipitation and limestone genesis. The microbiologist point of view. Sedimentary Geology, 126, 9-23 (1999).
  • 15. P. Tiano, L. Biagiotti, G. Mastromei, Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation, Journal of Microbiology Methods, 36, 139–145 (1999).
  • 16. E. May, Biobrush research monograph: novel approaches to conserve our European heritage. EVK4-CT-2001-00055, 2002-2005.
  • 17. J. Dick, W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, W. Verstraete, Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation, 17, 357–367 (2006).
  • 18. F. Hammes, N. Boon, J. de Villiers, W. Verstraete, S. D. Siciliano, Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied Environmental Microbiology, 69, 4901–4909 (2003).
  • 19. W. De Muynck, N. De Belie, W. Verstraete, Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36, 118–136 (2010).
  • 20. J. P. Adolphe, C. Billy, Biosynthèse de calcite par une association bactérienne aérobie ; CR Academic & Science: Paris, France, 278, 2873–2875 (1974).
  • 21. J. P. Adolphe, A. Hourimèche, J. F. Loubière, J. Paradas, F. Soleilhavoup, Les formations carbonatées d’origine bactérienne. Formations continentales d’Afrique du Nord. Bulletin of the Geological Society of France, 8, 55–62 (1989).
  • 22. J. P. Adolphe, J. F. Loubière, J. Paradas, F. Soleilhavoup, Procédé de traitement biologique d’une surface artificielle. European patent 90400G97.0., 1990.
  • 23. W. De Muynck, K. Verbeken, N. De Belie, W. Verstraete, Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 36, 99–111 (2010).
  • 24. F. G. Ferris, L. G.; Stehmeier, Bacteriogenic mineral plugging. U.S. patent 5,143,155., 1992.
  • 25. C. Jimenez-Lopez, F. Jroundi, C. Pascolini, C. Rodriguez-Navarro, G. Piñar-Larrubia, M. Rodriguez-Gallego, M. T. Gonzalez-Muñoz, Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. International Biodeterioration & Biodegradation, 62, 352–363 (2008).
  • 26. K. Heselmeyer, U. Fisher, K. E. Krumbein, T. Warscheid, Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite, Bioforum, 89, 1-2, (1991).
  • 27. G. Ranalli, M. Chiavarini, V. Guidetti, F. Marsala, M. Matteini, E. Zanardini, C. Sorlini, The use of micro-organisms for the removal of sulphates on artistic stoneworks. International Biodeterioration and Biodegradation, 40, 255–261 (1997).
  • 28. F. Cappitelli, E. Zanardini, G. Ranalli, E. Mello, D. Daffonchio, C. Sorlini, Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Applied Environmental Microbiology, 72, 3733–3737 (2006).
  • 29. F. Cappitelli, L. Toniolo, A. Sansonetti, D. Gulotta, G. Ranalli, E. Zanardini, C. Sorlini, Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Applied Environmental Microbiology, 73, 5671–5675 (2007).
  • 30. G. G. Amoroso, V. Fassina, Stone decay and conservation. Atmospheric Pollution, Cleaning, Protection, p. 453, Elsevier: Amsterdam, Holland 1983.
  • 31. M. Camaiti, G. Borselli, U. Matteoli, Prodotti consolidanti impiegati nelle operazioni di restauro. L’Edilizia, 10, 125–134 (1988).
  • 32. M. A. Aiello, M. Frigione, D. Acierno, Effects of Environmental Conditions on Performance of Polymeric Adhesives for Restoration of Concrete Structures. Journal of Materials in Civil Engineering, 14, 185-189 (2002).
  • 33. M. Frigione, M. A. Aiello, C. Naddeo, Water effects on the bond strength of concrete/concrete adhesive joints. Construction and Building Materials, 20, 957-970 (2006).
  • 34. M. Frigione, M. Lettieri, A. M. Mecchi, Environmental effects on epoxy adhesives employed for restoration of historical buildings. Journal of Materials in Civil Engineering, 18, 715-722 (2006).
  • 35. M. Lettieri, M. Frigione, Natural and Artificial Weathering Effects on Cold-Curing Epoxy Resins. Journal of Applied Polymer Science, 119, 1635-1645 (2011).
  • 36. M. Lettieri, M. Frigione, Effects of humid environment on thermal and mechanical properties of a cold-curing epoxy resin. Construction and Building Materials, 30, 753–760 (2012).
  • 37. I. Morse, The Kinetics of Calcium Carbonate Dissolution and Precipitation; Mineralogic Society of America, 1983.
  • 38. L. Zhong, M. R. Islam, A newmicrobial plugging process and its impact on fracture remediation. Proceedings of the 70th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, SPE 30519, pp. 703-715 Dallas, Texas 1995.
  • 39. K. Ramachandran, V. Ramakrishnan, S. Bang, Remediation of Concrete Using Micro Organisms. ACI Materials Journal, 98, 3-9 (2001).
  • 40. J. L. Day, V. Ramakrishnan, S. S. Bang, Microbiologically induced sealant for concrete crack remediation. Proceedings of the 16th Engineering Mechanics Conference, Seattle, Washington 2003.
  • 41. P. Ghosh, S. Mandal, B. D. Chattopadhyay, S. Pal, Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35, 1980-1983 (2005).
  • 42. H. M. Jonkers, E. Schlangen, Crack repair by concrete-immobilized bacteria, p. 7, Proceedings of First International Conference on Self Healing Materials, Noordwijk; A. J. M. Schmets, S. Van der Zwaag, Eds., The Netherlands 2007.
  • 43. H. M. Jonkers, A. Thijssen, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, p. 25, Proceedings of First International Conference on BioGeoCivil Engineering, Delft, The Netherlands 2008.
  • 44. N. De Belie, W. De Muynck, Crack repair in concrete using biodeposition. Proceedings of ICCRR Cape Town, South Africa 2008.
  • 45. K. Tittelboom, N. De Belie, W. De Muynck, W. Verstraete, Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40, 157–166 (2010).
  • 46. W. De Muynck, D. Debrouwer, N. De Belie, W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38, 1005–1014 (2008).
  • 47. S. Annea, O. Rozenbauma, P. Andreazza, J. L. Roueta, Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique. Construction and Building Materials, 24, 1036-1042 (2010).
  • 48. R. Wang, C. Qian, J. Wang, Bio-deposition of a calcite layer on Cementbased Materials by brushing agar-immobilized bacteria. Advances in Cement Research, 23, 185-192 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3e05c9d-7242-475c-8440-47c9ff5fde8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.