PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on deformation-induced damage evolution for Inconel718 superalloy with the use of an innovative single-specimen method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An innovative method for investigation of deformation-induced damage of elastic-plastic materials is proposed. A static tension test, performed on a specimen with a variable cross- -section gage part enabled analysis of degradation of the material structure for all stages of permanent deformation. Modified Johnson model has been used to quantify damage. Analysis of the damage of the specimen surface as well as observations of the damage induced inside the gage part of the specimen has been performed using SEM observations. Debonding at the interface between a hard inclusion and a ductile matrix has been found to be responsible for initiation of cracks on the specimen surface as well as inside the gage part of the specimen. Analysis of the subsequent void growth has been performed. Surface cracks are associated with plastic deformation resulting in an increase of the surface roughness. Variations of the specimen surface roughness have been found to be in good correlation with the damage parameter. This correlation enables the use of surface roughness as the relative damage indicator for the investigated material and deformation mode.
Słowa kluczowe
Rocznik
Strony
1379--1390
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Institute of Aviation, Warszawa, Poland
autor
  • Institute of Aviation, Warszawa, Poland
autor
  • Institute of Aviation, Warszawa, Poland
Bibliografia
  • 1. Bao Y., Wierzbicki T., 2004, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, 46, 81-89
  • 2. Ganjiani M., 2013, Identification of damage parameters and plastic properties of an anisotropic damage model by micro-hardness measurements, International Journal of Damage Mechanics, 22, 8, 1089-1108
  • 3. Gurson A.L., 1977, Porous rigid-plastic materials containing rigid inclusions – yield function, plastic potential, and void nucleation, Fracture, 2, ICF4, Waterloo, Canada
  • 4. Hall J.A., 1998, Fatigue crack initiation in alpha-beta titanium alloys, International Journal of Fatigue, 19, Supp. 1, S23-S37
  • 5. Johnson G.R., 1980, Materials characterization for computations involving severe dynamic loading, Proceedings of Army Symposium of Solid Mechanics, Cape Cod, Mass., 62-67
  • 6. Miner M.A., 1945, Cumulative damage in fatigue, Journal of Applied Mechanics, 67, A159-A164
  • 7. Niazi M.S., Wisselink H.H., Meinders V.T., van den Boogaard A.H., 2013, Materialinduced anisotropic damage in DP600, International Journal of Damage Mechanics, 22, 7, 1039-1070
  • 8. Nielsen K.L., Hutchinson J.W., 2012, Cohesive traction-separation laws for tearing of ductile metal plates, International Journal of Impact Engineering, 48, 15-23
  • 9. Palmgren A., 1924, Die Lebensdauer von Kugellagern, Verfahrenstechnik, Berlin, 68, 339-341
  • 10. Petersmeier T., Martin U., Eifler D., Oettel H., 1998, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121, International Journal of Fatigue, 20, 3, 251-255
  • 11. Shen J., Mao J., Boileau J., Chow C.L., 2014, Material damage evaluation with measured microdefects and multiresolution numerical analysis, International Journal of Damage Mechanics, 23, 4, 537-566
  • 12. Socha G., 2003, Experimental investigations of fatigue cracks nucleation, growth and coalescence in structural steel, International Journal of Fatigue, 25, 2, 139-147
  • 13. Socha G., 2004, Prediction of the fatigue life on the basis of damage progress rate curves, International Journal of Fatigue, 26, 4, 339-347
  • 14. Socha G., Dietrich L., 2012, Accumulation of damage in A336 GR5 structural steel subject to complex stress loading, Strain, 48, 279-285
  • 15. Socha G., Dietrich L., 2014, A fatigue damage indicator parameter for P91chromiummolybdenum alloy steel and fatigue pre-damaged P54T carbon steel, Fatigue and Fracture of Engineering Materials and Structures, 37, 195-205
  • 16. Socha G., Dietrich L., 2016, Deformation based fatigue damage accumulation model, Solid State Phenomena, 240, 128-133
  • 17. Socha G., Madejski B., Krysztofik J., Czarnewicz S., 2014, Test method of structural damages caused by permanent deformation of the alloy in the test sample by tensile test and the sample to test damage of the alloy structure, Patent pending no. P-409294, Urząd Patentowy RP
  • 18. Yang B., Feng M.F., Zhai Z.Y., 2010, Evolutionary statistical character of fatigue damage of smooth surface samples by an effective short fatigue crack criterion, International Journal of Damage Mechanics, 19, 211-231
  • 19. Yang L., Fatemi A., 1998, Cumulative fatigue damage mechanisms and quantifying parameters: a literature review, Journal of Testing and Evaluation, JTEVA, 26, 2, 89-100
  • 20. Zhang M., Yang P., Tan Y., 1999, Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading, International Journal of Fatigue, 21, 823-830
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3df9bd6-9a1b-4d75-b555-d43ee18d8bb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.