PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Co-occurrence patterns of wood-decaying fungi on Picea abies logs: does Fomitopsis pinicola influence the other species?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dominant fungi, especially primary decayers, probably influence other fungi growing together with them. Fomitopsis pinicola is one of the important primary decayers, and it has been shown that several other species regularly co-occur together with it. We asked whether the presence of common species (especially F. pinicola) affects the species richness and composition of other fungi. This study was conducted in an old-growth mountain spruce forest in the Bohemian Forest, Czech Republic. We surveyed logs on the ground for sporocarps of fungi in three successive years. Characteristics of logs such as dimensions, stage of decay and the cause of tree death (wind, competition, butt rot, bark beetles and unascertained) were recorded. F. pinicola was abundant mostly on logs that originated from trees infested by bark beetles. Analysis of covariance with the volume of logs and decay stage as covariables showed significant effect of these covariables and of F. pinicola presence on species numbers – logs in middle decay stages with the sporocarps of F. pinicola had more species than other logs. Based on Canonical Correspondence Analysis with volume, decay stage and the cause of tree death as covariables, the species composition on logs was also influenced by F. pinicola. We found such statistical effects in several other species. Redlisted species Antrodiella citrinella and Camarops tubulina co-occurred with F. pinicola.
Rocznik
Strony
119--133
Opis fizyczny
Bibliogr. 61 poz., il.
Twórcy
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic
  • Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic
autor
  • Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
  • Institute of Entomology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
Bibliografia
  • 1. Aakala T. 2010 – Coarse woody debris in latesuccessional Picea abies forests in northern Europe: Variability in quantities and models of decay class dynamics – For. Ecol. Manage. 260: 770–779.
  • 2. Abrahamsson M., Lindbladh M., Rönnberg J. 2008 – Influence of butt rot on beetle diversity in artificially created high-stumps of Norway spruce – For. Ecol. Manage. 255: 3396–3403.
  • 3. Bače R., Svoboda M., Pouska V., Janda P., Č er venka J. 2012 – Natural regeneration in Central-European subalpine spruce forests: Which logs are suitable for seedling recruitment? – For. Ecol. Manage. 266: 254–262.
  • 4. Bässler C., Müller J. 2010 – Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden – Fungal Biol. 114: 129–133.
  • 5. Bässler C., Müller J., Svoboda M., Lepšová A., Hahn C., Holzer H., Pouska V. 2012 – Diversity of wood-decaying fungi under different disturbance regimes - a case study from spruce mountain forests – Biodivers. Conserv. 21: 33–49.
  • 6. Boddy L. 2000 – Interspecific combative interactions between wood-decaying basidiomycetes – FEMS Microbiol. Ecol. 31: 185–194.
  • 7. Castello J.D., Shaw C.G., Furniss M.M. 1976 – Isolation of Cryptoporus volvatus and Fomes pinicola from Dendroctonus pseudotsugae – Phytopathology, 66: 1431–1434.
  • 8. Dighton J., Thomas E.D., Latter P.M. 1987 – Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm - Biol. Fertil. Soils, 4: 145–150.
  • 9. Edman M., Jönsson M., Jonsson B.G. 2007 – Fungi and wind strongly influence the temporal availability of logs in an old-growth spruce forest – Ecol. Appl. 17: 482–490.
  • 10. Fukami T., Dickie I.A., Wilkie J.P., Paulus B.C., Park D., Roberts A., Buchanan P.K., Allen R.B. 2010 – Assembly history dictates ecosystem functioning: evidence from wood decomposer communities – Ecol. Letters, 13: 675–684.
  • 11. Fukasawa Y., Osono T., Takeda H. 2009 – Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. – J. For. Res. 14: 20–29.
  • 12. Hansen L., Knudsen H. (eds.) 1997 – Nordic Macromycetes, Vol. 3, Heterobasidioid, Aphyllophoroid and Gasteromycetoid Basidiomycetes – Nordsvamp, Copenhagen, 444 pp.
  • 13. Hansen L., Knudsen H. (eds.) 2000 – Nordic Macromycetes, Vol. 1, Ascomycetes – Nordsvamp, Copenhagen, 309 pp.
  • 14. Heilmann-Clausen J. 2001 – A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs – Mycol. Res. 105: 575–596.
  • 15. Høiland K., Bendiksen E. 1997 – Biodiversity of wood-inhabiting fungi in a boreal coniferous forest in Sør-Trøndelag County, Central Norway – Nordic J. Bot. 16: 643–659.
  • 16. Holec J. 2005 – Distribution and ecology of Camarops tubulina (Ascomycetes, Boliniaceae) in the Czech Republic and remarks on its European distribution – Czech Mycol. 57: 97–115.
  • 17. Holec J., Beran M. (eds.). 2006 – Červený seznam hub (makromycetů) České republiky [Red List of fungi (macromycetes) of the Czech Republic] – Příroda, Praha 24: 1–282 (in Czech, English summary).
  • 18. Holmer L., Stenlid J. 1997 – Competitive hierarchies of wood decomposing basidiomycetes in artificial systems based on variable inoculum sizes – Oikos, 79: 77–84.
  • 19. Holmer L., Renvall P., Stenlid J. 1997 – Selective replacement between species of woodrotting basidiomycetes, a laboratory study – Mycol. Res. 101: 714–720.
  • 20. Horak E. 2005 – Röhrlinge und Blätterpilze in Europa. 6. Auflage – Elsevier, Spektrum Akademischer Verlag, München, 555 pp.
  • 21. Iakovlev A., Stenlid J. 2000 – Spatiotemporal patterns of laccase activity in interacting mycelia of wood-decaying basidiomycete fungi – Microb. Ecol. 39: 236–245.
  • 22. Index Fungorum – URL http://www.indexfungorum.org.
  • 23. Jonsell M., Nordlander G. 2002 – Insects in polypore fungi as indicator species: a comparison between forest sites differing in amounts and continuity of dead wood – For. Ecol. Manag. 157: 101–118.
  • 24. Jonsell M., Weslien J. 2003 – Felled or standing retained wood – it makes a difference for saproxylic beetles – For. Ecol. Manage. 175: 425–435.
  • 25. Jonsell, M., Schroeder, M., Weslien J. 2005 – Saproxylic beetles in high stumps of spruce: Fungal flora important for determining the species composition – Scand. J. For. Res. 20: 54–62.
  • 26. Kauserud H., Colman J.E., Ryvarden L. 2008 – Relationship between basidiospore size, shape and life history characteristics: a comparison of polypores – Fungal Ecol. 1: 19–23.
  • 27. Kotlaba F. 1984 – Zeměpisné rozšíření a ekologie chorošů (Polyporales s.l.) v Československu [Geographical distribution and ecology of polypores (Polyporales s. l.) in Czechoslovakia] – Academia, Praha (in Czech, English summary), 194 pp.
  • 28. Kruys N., Jonsson B.G., Ståhl G. 2002 – A stage-based matrix model for decay-class dynamics of woody debris – Ecol. Appl. 12: 773–781.
  • 29. Lännenpää A., Aakala T., Kauhanen H., Kuuluvainen T. 2008 – Tree mortality agents in pristine Norway spruce forests in northern Fennoscandia – Silva Fennica, 42: 151–163.
  • 30. Lim Y.W., Kim J.J., Lu M., Breuil C. 2005 - Determining fungal diversity on Dendroctonus ponderosae and Ips pini affecting lodgepole pine using cultural and molecular methods – Fungal Divers. 19: 79–94.
  • 31. Lindahl B., Stenlid J., Olsson S., Finlay R . 1999 – Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems – New Phytol. 144: 183–193.
  • 32. Lindblad I. 1998 – Wood-inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality – Nordic J. Bot. 18: 243–255.
  • 33. Lindner D.L., Vasaitis R., Kubartová A., Allmér J., Johannesson H., Banik M.T., Stenlid J. 2011 – Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation – Fungal Ecol. 4: 449–460.
  • 34. Müller J., Bußler H., Goßner M., Rettelbach T., Duelli P. 2008 – The European spruce bark beetle Ips typographus in a national park: from pest to keystone species – Biodivers. Conserv. 17: 2979–3001.
  • 35. Müller M.M., Varama M., Heinonen J., Hallaksela A.-M. 2002 – Influence of insects on the diversity of fungi in decaying spruce wood in managed and natural forests - For. Ecol. Manage. 166: 165–181.
  • 36. Neuhäuslová Z. (ed.) 2001 – The map of potential natural vegetation of the Šumava National Park – Silva Gabreta, Supplementum 1.
  • 37. Niemelä T., Renvall P., Penttilä R. 1995 - Interactions of fungi at late stages of wood decomposition – Annales Botanici Fennici, 32: 141–152.
  • 38. Nordén B. 1997 – Genetic variation within and among populations of Fomitopsis pinicola (Basidiomycetes) – Nordic J. Bot. 17: 319–329.
  • 39. Ovaskainen O., Hottola J., Siitonen J. 2010 – Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions – Ecology, 91: 2514–2521.
  • 40. Persson Y., Ihrmark K., Stenlid J. 2011 – Do bark beetles facilitate the establishment of rot fungi in Norway spruce? – Fungal Ecol. 4: 262–269.
  • 41. Persson Y., Vasaitis R., Långström B., Öhrn P., Ihrmark K., Stenlid J. 2009 – Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter – Microb. Ecol. 58: 651–659.
  • 42. Pettey T.M., Shaw C.G. 1986 – Isolation of Fomitopsis pinicola from in-flight bark beetles (Coleoptera: Scolytidae) – Can. J. Bot. 64: 1507–1509.
  • 43. Pouska V., Svoboda M., Lepšová A. 2010 - The diversity of wood-decaying fungi in relation to changing site conditions in an oldgrowth mountain spruce forest, Central Europe – Eur. J. For. Res. 129: 219–231.
  • 44. Pouska V., Lepš J., Svoboda M., Lepšová A. 2011 – How do log characteristics influence the occurrence of wood fungi in a mountain spruce forest? – Fungal Ecol. 4: 201–209.
  • 45. Rajala T., Peltoniemi M., Hantula J., Mäkipää R., Pennanen T. 2011 – RNA reveals a succession of active fungi during the decay of Norway spruce logs – Fungal Ecol. 4: 437–448.
  • 46. Renvall P. 1995 – Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland – Karstenia, 35: 1–51.
  • 47. Röder J., Bässler C., Brandl R., D vořák L., Floren A., Goßner M.M., Gruppe A., Jarzabek-Müller A., Vojtěch O., Wagner C., Müller J. 2010 – Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient – For. Ecol. Manage. 259: 1513–1521.
  • 48. Ryvarden L., Gilbertson R.L. 1993 – European Polypores. Part 1: 1–387. Abortiporus - Lindtneria – Synopsis Fungorum 6, Fungiflora, Oslo.
  • 49. Ryvarden L., Gilbertson R.L. 1994 – European Polypores. Part 2: 388–743. Meripilus - Tyromyces – Synopsis Fungorum 7, Fungiflora, Oslo.
  • 50. Siitonen J. 2001 – Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example – Ecological Bulletins, 49: 11–41.
  • 51. Sippola A.-L., Renvall P. 1999 – Wooddecomposing fungi and seed tree cutting: A 40-year perspective – For. Ecol. Manag. 115: 183–201.
  • 52. Spies T.A., Franklin J.F., Thomas T.B. 1988 – Coarse woody debris in Douglas-fir forests of western Oregon and Washington – Ecology, 69: 1689–1702.
  • 53. Spirin V.A., Shirokov A.I. 2002 – The features of the wood-decay in the virgin Abies-Fir forests from Nizhny Novgorod region – Mikologia i fitopatologia, 36: 25–31 (in Russian, English summary).
  • 54. StatSoft, Inc. 2011. Statistica (data analysis software system), version 10. www.statsoft.com.
  • 55. Svoboda M., Pouska V. 2008 – Structure of a Central-European mountain spruce oldgrowth forest with respect to historical development – Forest Ecol. Manage. 255: 2177–2188.
  • 56. Tedersoo L., Kõljalg U., Hallenberg N., Larsson K.-H. 2003 – Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest – New Phytol. 159: 153–165.
  • 57. ter Braak C.J.F., Šmilauer P. 2003 – Canoco 4.5. Biometris, Plant Research International, Wageningen, Netherlands.
  • 58. Vasiliauskas R., Stenlid J., Thomsen I.M. 1998 – Clonality and genetic variation in Amylostereum areolatum and A. chailletii from northern Europe – New Phytol. 139: 751–758.
  • 59. Weslien J., Djupström L.B., S chroeder M., Widenfalk O. 2011 – Long-term priority effects among insects and fungi colonizing decaying wood – J. Anim. Ecol. 80: 1155–1162.
  • 60. Worrall J.J., Lee T.D., Harrington T.C. 2005 – Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA – J. Ecol. 93: 178–190.
  • 61. Ylisirniö A.-L., Berglund H., Aakala T., Kuuluvainen T., Kuparinen A.-M., Norokorpi Y., Hallikainen V., Mikkola K., Huhta E. 2009 – Spatial distribution of dead wood and the occurrence of five saproxylic fungi in old-growth timberline forests in northern Finland – Scand. J. For. Res. 24: 527–540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3dca647-0259-4ea2-961f-9abeb9a7e5ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.