PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of pre-structuring parameters in fabrication of magnetorheological elastomer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pre-structuring of magnetic particles during fabrication of magnetorheological elastomer (MRE) is a crucial step, which results in the formation of chain-like columnar structures in the rubber matrix. In this study, MRE based on natural rubber and carbonyl iron particles were prepared. The Taguchi method was utilized to study the effect of several dominating factors during the fabrication process such as pre-curing time, pre-curing temperature and applied magnetic field during curing on the loss tangent (tan δ) and tensile properties. Tan δ was measured through parallel-plate rheometer over a frequency range of 1–100 Hz and a strain amplitude range of 0.1–6%. Tensile properties were measured with a universal tensile testing machine. The obtained data were statistically analyzed using S/N ratios and ANOVA in order to predict the optimal combination of factors, and then further experiments were conducted for verification purpose. Results indicated that the magnetic field had the greatest influence on tan δ when measured over a range of frequency and elongation at break. Furthermore, pre-curing time and magnetic field were found to influence tan δ when measured over a range of strain amplitude. However, none of the factors exhibited significant influence on tensile strength. In addition, the morphology of MRE was examined using scanning electron microscopy (SEM).
Rocznik
Strony
557--568
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
  • School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
  • School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
  • School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, 14300, Malaysia
Bibliografia
  • [1] M. Brodt, R.S. Lakes, Composite materials which exhibit high stiffness and high viscoelastic damping, J. Compos. Mater. 29 (1995) 1823–1833.
  • [2] J. Yao, Y. Sun, Y. Wang, Q. Fu, Z. Xiong, Y. Liu, Magnetinduced aligning magnetorheological elastomer based on ultra-soft matrix, Compos. Sci. Technol. 162 (2018) 170–179. http://dx.doi.org/10.1016/J.COMPSCITECH.2018.04.036.
  • [3] C.J. Lee, S.H. Kwon, H.J. Choi, K.H. Chung, J.H. Jung, Enhanced magnetorheological performance of carbonyl iron/natura rubber composite elastomer with gamma-ferrite additive, Colloid Polym. Sci. 296 (2018) 1609–1613. http://dx.doi.org/10.1007/s00396-018-4373-0.
  • [4] G.V. Stepanov, S.S. Abramchuk, D.A. Grishin, L.V. Nikitin, E.Y. Kramarenko, A.R. Khokhlov, Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers, Polymer (Guildf). 48 (2007) 488–495. http://dx.doi.org/10.1016/J.POLYMER.2006.11.044.
  • [5] A. Boczkowska, S. Awietjan, Microstructure and properties of magnetorheological elastomers, in: A. Boczkowska (Ed.), Adv. Elastomers – Technol. Prop. Appl., InTechOpen, London, 2017595.
  • [6] X. Wang, F. Gordaninejad, Magnetorheological materials and their applications, in: H.-J. rg, S. Mohsen Shahinpoor (Eds.), Intell. Mater., The Royal Society of Chemistry, Cambridge, 2008.
  • [7] W.H. Li, X.Z. Zhang, H. Du, A. Öchsner, L.F.M. da Silva, H. Altenbach, Magnetorheological elastomers and their applications, in: P.M. Visakh, S. Thomas, A.K. Chandra, A.P. Mathew (Eds.), Adv. Elastomers I Blends Interpenetr. Networks, Springer, Berlin, 2013.
  • [8] L. Chen, X. Gong, W. Jiang, J. Yao, H. Deng, W. Li, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci. 42 (2007) 5483–5489. http://dx.doi.org/10.1007/s10853-006-0975-x.
  • [9] J. Kaleta, M. Królewicz, D. Lewandowski, Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices, Smart Mater. Struct. 20 (2011) 85006, http://dx.doi.org/10.1088/0964-1726/20/8/085006.
  • [10] S. Raa Khimi, K.L. Pickering, B.R. Mace, Dynamic properties of magnetorheological elastomers based on natural rubber and iron sand, J. Appl. Polym. Sci. 132 (2014) 41506, http://dx.doi.org/10.1002/app.4150610.1002/APP.41506 (1–13).
  • [11] W.H. Li, M. Nakano, Fabrication and characterization of PDMS based magnetorheological elastomers, Smart Mater. Struct. 22 (2013) 55035, http://dx.doi.org/10.1088/0964-1726/22/5/055035.
  • [12] I.A. Perales-Martínez, L.M. Palacios-Pineda, L.M. Lozano-Sánchez, O. Martínez-Romero, J.G. Puente-Cordova, A. Elías-Zúñiga, Enhancement of a magnetorheological PDMS elastomer with carbonyl iron particles, Polym. Test. 57 (2017) 78–86. http://dx.doi.org/10.1016/j.polymertesting.2016.10.029.
  • [13] J. Li, X. Gong, Z. Xu, W. Jiang, The effect of pre-structure process on magnetorheological elastomer performance, Int. J. Mater. Res. 99 (2008) 1358–1364.
  • [14] J.S. An, S.H. Kwon, H.J. Choi, J.H. Jung, Y.G. Kim, Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance, Compos. Struct. 160 (2017) 1020–1026. http://dx.doi.org/10.1016/j.compstruct.2016.10.128.
  • [15] H.S. Jung, S.H. Kwon, H.J. Choi, J.H. Jung, Y.G. Kim, Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology, Compos. Struct. 136 (2016) 106–112. http://dx.doi.org/10.1016/j.compstruct.2015.10.008.
  • [16] J. Ubaidillah, A. Sutrisno, S.A. Purwanto, Mazlan, Recent progress on magnetorheological solids – materials, fabrication, testing, applications, Adv. Eng. Mater. (2014), http://dx.doi.org/10.1002/adem.201400258.
  • [17] M. Yu, S. Qi, J. Fu, M. Zhu, D. Chen, Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix, Compos. Sci. Technol. 139 (2017) 36–46. http://dx.doi.org/10.1016/j. compscitech.2016.12.010.
  • [18] J. Wu, X. Gong, L. Chen, H. Xia, Z. Hu, Preparation and characterization of isotropic polyurethane magnetorheological elastomer throughin situpolymerization, J. Appl. Polym. Sci. 114 (2009) 901–910. http://dx.doi.org/10.1002/app.30563.
  • [19] X. Qiao, X. Lu, X. Gong, T. Yang, K. Sun, X. Chen, Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly (styrene-b-ethylene-co-butylene-b-styrene) (SEBS), Polym. Test. 47 (2015) 51–58. http://dx.doi.org/10.1016/j.polymertesting.2015.08.004.
  • [20] J. Ubaidillah, A. Sutrisno, S.A. Purwanto, Mazlan, Recent progress on magnetorheological solids: materials, fabrication, testing, and applications, Adv. Eng. Mater. 17 (2015) 563–597. http://dx.doi.org/10.1002/adem.201400258.
  • [21] Y. Sun, Y. Wang, J. Yao, L. Gao, D. Li, Y. Liu, Highly magnetic sensitivity of polymer nanocomposite hydrogels based on magnetic nanoparticles, Compos. Sci. Technol. 141 (2017) 40–47. , http://dx.doi.org/10.1016/J.COMPSCITECH.2017.01.006.
  • [22] W.D. Armstrong, A. Boczkowska, S. Awietjan, K. Babski, R. Wroblewski, M. Leonowicz, Effect of the processing conditions on the Microstructure of Urethane Magnetorheological Elastomers, vol. 6170, 2006. p. 61700R http://dx.doi.org/10.1117/12.651668.
  • [23] R.K. Roy, A Primer on The Taguchi Method, 2nd ed., Society of Manufacturing Engineers, Dearborn, 2010.
  • [24] D.C. Jiles, Theory of the magnetomechanical effect, J. Phys. D: Appl. Phys. 28 (1995) 1537 http://stacks.iop.org/0022-3727/28/i=8/a=001.
  • [25] A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, C. Evrensel, Development and characterization of magnetorheological elastomers, J. Appl. Polym. Sci. 105 (n.d.) 2497–2508, doi:10.1002/app.24348.
  • [26] S. Raa Khimi, K.L. Pickering, Investigation and modelling of damping mechanisms of magnetorheological elastomers, J. Appl. Polym. Sci. 133 (2015) 43247, http://dx.doi.org/10.1002/app.4324710.1002/APP.43247 (1–11).
  • [27] M. Rendek, A. Lion, Amplitude dependence of fillerreinforced rubber: experiments, constitutive modelling and FEM – implementation, Int. J. Solids Struct. 47 (2010) 2918–2936.
  • [28] Y. Wang, X. Zhang, J. Oh, K. Chung, Fabrication and properties of magnetorheological elastomers based on CR/ENR self-crosslinking blends, Smart Mater. Struct. 24 (2015) 95006, http://dx.doi.org/10.1088/0964-1726/24/9/095006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3c2eb10-62f9-4f36-8307-a5253242d2c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.