PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization and kinetics studies of lead concentrate leaching using fluoroboric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the feasibility of lead dissolution from lead concentrate using fluoroboric acid by hydrometallurgical method was investigated in order to aviod the disadvantages of the pyrometallurgical processes. The effects of important operating parameters such as leaching time, liquid/solid ratio, stirring speed, temperature and fluoroboric acid concentration on the lead recovery were investigated using response surface methodology (RSM) based on the central composite design (CCD) model. The results show that the optimum conditions for the high lead recovery were: leaching time= 30 min, liquid/solid ratio= 10, stirring rate= 500 rpm, temperature= 80oC and fluoroboric acid concentration= 3.35 mol/L. More than 94% of lead was recovered in the optimum conditions. The results indicated that the liquid/solid ratio, fluoroboric acid concentration, temperature and leaching time were the most effective parameters on the process efficiency, respectively. Dissolution kinetics studies of lead in the fluoroboric acid were also evaluated. The chemical reaction was determined as the controlling mechanism of reaction at the shrinking core model. The activation energy was determined using Arrhenius model as 5.99 kJ/mol.
Rocznik
Strony
1014--1027
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Mining Engineering, University of Zanjan, Iran
Bibliografia
  • ABDOLLAHI, P.,YOOZBASHIZADEH, H., MORADKHANI, D.,BEHNIAN, D. (2015). A study on cementation process of lead from brine leaching solution by aluminum powder. Library Journal 2,1-6.
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M., RASHCHI, F., NAAZERI M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149, 153-167.
  • AMALIA, D., Y. Ramanda and M. Maryono 2017. Extraction of lea form galena concentrates using fluosilic acid and peroxide. Indonesian Mining Journal 20(1), 69-80.
  • BABA, A. A., ADEKOLA, F. A., 2012. A study of dissolution kinetics of a Nigerian galena ore in hydrochloric acid. Journal of Saudi Chemical Society 16(4),377-386.
  • BOZZANO, G., DENTE, M., PIERUCCI, S. MACCAGNI, M. 2011. Modeling and Simulation of the Production of Lead and Elementary Sulphur from Lead Sulphide Concentrates. Computer Aided Chemical Engineering, Elsevier. 29, 1733-1737.
  • CHMIELEWSKI, T., GIBAS, K., BOROWSKI, K., ADAMSKI, Z., WOZNIAK, B., MUSZER, A., 2017. Chloride leaching of silver and lead from a solid residue after atmospheric leaching of flotation copper concentrates. Physicochem. Probl. Miner. Process 53(2), 893-907.
  • DENG, J., SUN, Q., LIN, P., SONG, G., WEN, S., DENG,. J., WU,. D., 2015. Dissolution kinetics of zinc oxide ore with an organic acid. International Journal of Metallurgical & Materials Engineering1, 109.
  • FENG, Q.-C., WEN, S.-M., WANG, Y.-J,. CAO,Q.-B., ZHAO,W.-J., 2015. Dissolution kinetics of cerussite in an alternative leaching reagentfor lead. Chemical Papers 69(3), 440-447.
  • FENG, Q., WEN, S., WANG,Y.,ZHAO, W., DENG, J., 2015. Investigation of leaching kinetics of cerussite in sodium hydroxide solutions. Physicochemical Problems of Mineral Processing 51.
  • GHASEMI, S. M. S., AZIZI,. A., 2018. Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. Journal of Materials Research and Technology 7(2),118-125.
  • GUAN, S., DENG, F., HUANG, S.-Q.,LIU, S.-Y., AI,L.-X, SHE,P.-Y., 2017. Optimization of magnetic field-assisted ultrasonication for the disintegration of waste activated sludge using Box–Behnken design with response surface methodology. Ultrasonics sonochemistry 38: 9-18.
  • HABASHI, F., 1999. Kinetics of metallurgical processes, Métallurgie Extractive Québec.
  • HABASHI,F., 1999. A textbook of hydrometallurgy, Métallurgie Extractive.
  • HOSEINIAN, F., REZAI, B., KOWSARI, E., 2018. Optimization and separation mechanism of Ni (II) removal from synthetic wastewater using response surface method. International Journal of Environmental Science and Technology, 1-10.
  • IM, D. (2003). Recovery of solder and electronic components from printed circuit boards. Electrochemistry in Mineral and Metal Processing VI: Proceedings of the International Symposium, The Electrochemical Society.
  • IMAMUTDINOVA, V.,1967. Kinetics of dissolution of borates in mineral acid solutions. Zh. Prikl. Khim. 40, 2593-2596.
  • KHATAEE, A., FATHINIA, M., ABER, S., ZAREI, M., (2010). Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. Journal of hazardous materials 181(1-3), 886-897.
  • KOCAN, F. HICSONMEZ, U., 2018. Leaching of celestite in sodium hydroxide solutions and kinetic modelling. Journal of Dispersion Science and Technology, 1-12.
  • LAZIC, Z. R., 2006. Design of experiments in chemical engineering: a practical guide, John Wiley & Sons.
  • LEVENSPIEL, O., 1999. Chemical reaction engineering. Industrial & engineering chemistry research 38(11), 4140-4143.
  • LIEW, F., 2008. Pyrometallurgy versus hydrometallurgy. TES-AMM Singapore.(www.tes-amm.com.au/downloads/TES-AMM_analysis_pyrometallurgy_vs_hydrometallurgy_ April_2008. pdf).
  • MACCAGNI, M., 2014. New Approaches on Non Ferrous Metals Electrolysis. Chemical Engineering Transactions 41, 61-66.
  • MACCAGNI, M., NIELSEN, J., HYMER, T., 2015. The FLUBOR® Process: Pilot Tests Results. Proceedings of European Metallurgical Conference 2015 & Lead-Zinc 2015.
  • MOZAFFARI, E., MOHSENI, M., ABAIE, E. 2014. Recovering Lead Metal from Lak Mine Lead Concentrate by Ferric Chloride Leaching. Pure and Applied Science & Technology 4(2), 37-43.
  • PARK, Y. J., FRAY, D. J. 2009. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials 164(2-3), 1152-1158.
  • QIN, W.-Q., HUI, L.,TANG,S.-H., WEI, S., 2009. Preparation of lead sulfate powder directly from galena concentrates. Transactions of Nonferrous Metals Society of China 19(2), 479-483.
  • SONG, K., YUAN, J., SHEN, P.,YAN, S.,LI,F. LIU, D., 2016. Leaching performance of low grade zinc oxide ore in the system of NH3-(NH4) 2SO4-H2O. 2015 4th International Conference on Sustainable Energy and Environmental Engineering, Atlantis Press.
  • STRUNNIKOV, S. KOZ'MIN, Y. A., 2005. Hydrometallurgical schemes of lead concentrate processing. Chemistry for Sustainable Development 13(4), 483-490.
  • TAN, A., 1992. Tin and Solder plating in the semiconductor industry, Springer Science & Business Media.
  • WU, D., CUI, C., WEN, S., DENG, J., 2016. Kinetics of Cerussite Leaching in Sulfamic Acid Solution. Journal of Chemical Engineering of Japan 49(5), 445-451.
  • WU, Z., DREISINGER, D. B.,URCH, H., FASSBENDER, S., 2014. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA). Hydrometallurgy 142, 23-35.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3bfba15-a61c-4740-b348-9e65bd6e07b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.