Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Current statistical methods and technologies used for speaker identification via dynamic formant frequency often involve classic multivariate analyses that must meet a number of criteria in order to be considered trustworthy. The authors propose more advanced classification techniques, including artificial neural networks. Owing to iterative learning algorithms, neural networks can be trained to detect highly complex, nonlinear relations hidden in input data. This study specifically considers feed-forward multilayer perceptron and radial basic function network models. The investigation involves an analysis of the Polish vowel (stressed or unstressed) in selected contexts described by the four lowest formant frequencies. Results indicate high accuracy of neural networks as a speaker identification tool reaching up to 100%. In addition, the authors have determined that the accuracy of classification is similar when based on a single context to when input data are aggregated over several different contexts.
Czasopismo
Rocznik
Tom
Strony
91--99
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Cracow, Poland
autor
- Institute of Forensic Research, Cracow, Poland
autor
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Cracow, Poland
autor
- Department of Automatics and Biomedical Engineering, AGH University of Science and Technology, Cracow, Poland
Bibliografia
- 1. Remez RE, Fellowes JM, Rubin PE. Talker identification based on phonetic information. J Exp Psychol Human 1997;23:651-66.
- 2. McDougall K. Dynamic features of speech and the characterization of speakers: towards a new approach using formant frequencies. Int J Speech Lang Law 2006;13:89-126.
- 3. lessen M. Forensic phonetics. Lang Linguist Compass 2008;2:671-711.
- 4. Rose P. Forensic speaker identification, 1st ed. New York: Taylor & Francis Forensic Science Series, 2002.
- 5. Nolan F, Grigoras C. A case for formant analysis in forensic speaker identification. Int J Speech Lang Law 2005:2:143-73.
- 6. Tiwari M, Tiwari M. Voice - how humans communicate? J Nat Sci Biol Med 2012;3:3-ll.
- 7. Bacharowski JA, Owren MJ. Acoustic correlates of talker sex and individual talker identity are present in a short vowel segment produced in running speech. J Acoust Soc Am 1999;106:1054-63.
- 8. Bosch JC. Acoustic study of the vowel formant frequencies and FO: a contribution to Catalan forensic phonetics. In: Proceedings of the 15th International Congress of Phonetic Sciences. Barcelona, Spain: Universitat Autdnoma de Barcelona, 2003:687-90.
- 9. Jassem W, Grygiel W. Off-line classification of Polish vowel spectra using artificial neural networks. J Int Phon Assoc 2004:34:37-52.
- 10. McDougall K. Speaker-specific formant dynamics: an experiment on Australian English /al/. Int J Speech Lang Law 2004;ll:103-30.
- 11. McDougall K, Nolan F. Discrimination of speakers using the formant dynamics of/u:/ in British English. In: Proceedings of the 16th International Congress of Phonetic Sciences. Saarbrucken, Germany: Universitat des Saarlandes, 2007:1825-8.
- 12. Hedbavna B. An acoustical study of long domain /r/ and /I/coarticulation. In: Proceedings of the 15th Conference of Phonetic Sciences. Barcelona, Spain: Universitat Autdnoma de Barcelona, 2003:679-82.
- 13. Jassem W. Formant of the Polish vowels as phonemic and speaker-related cues. Report on a discriminant analysis. Speech Lang Technol 1999;3:191-216.
- 14. McLachlan G. Discriminant analysis and statistical pattern recognition, 2nd ed. Hoboken, NJ: Wiley Series in Probability and Statistics, 2004.
- 15. Huberty CJ, Otejnik S. Applied MANOVA and discriminant analysis, 2nd ed. Hoboken, NJ: Wiley Series in Probability and Statistics, 2006.
- 16. Tabachnik BG, Fidell LS. Using multivariate statistics, 6th ed. Cambridge: Pearson, 2012.
- 17. Salapa K, Trawinska A, Roterman I. Forensic speaker identification models based on artificial neural networks. Case study: Polish vowel e. In: Annual Conference of the International Association for Forensic Phonetics and Acoustics (IAFPA), University of South Florida, Tampa, FL, USA, 2013.
- 18. Salapa K, Trawinska A, Roterman I. Applying data mining classification techniques to speaker identification. In: Proceedings of XIX National Conference on Application of Mathematics in Biology and Medicine, University of Gdansk, 2013:84-9.
- 19. Salapa K, Trawinska A, Roterman I. Forensic voice comparison by means of artificial neural networks. Bio-Algorithms Med-Syst 213;9:191-7.
- 20. Jassem W. Illustrations of the IPA: Polish. J Int Phon Assoc 2003:33:103-7.
- 21. Trawinska A, Klus A. Forensic speaker identification by the linguistic-acoustic method in KEU and IES. Prob Forensic Sci 2009;LXXVIII:160-74.
- 22. Austrian Academy of Science, Acoustics Research Institute, S_TOOLS_STx - intelligent sound processing. Available at: https://www.kfs.oeaw.ac.at. Accessed: 1 Jun 2010.
- 23. Bishop CM. Pattern recognition and machine learning, lsted. New York: Springer, 2006.
- 24. Basu JK, Bhattacharyya D, Kim T. Use of artificial neural network in pattern recognition. Int J Software Eng Appl 2010;4:23-34.
- 25. Du H. Data mining techniques and applications: an introduction, lsted. Hampshire, UK: Cengage Learning, 2010.
- 26. Tuffery S. Data mining and statistics for decision making, 1st ed. Hoboken, NJ: Wiley Series in Computational Statistics, 2011.
- 27. Maimon 0, Rokach L. The data mining and knowledge discovery handbook, lsted. New York: Springer, 2005.
- 28. Tadeusiewicz R, Korbicz J, Rutkowski L, Duch W, editors. Inzynieria biomedyczna. Podstawy i zastosowania. Tom 9 Sieci neuronowe w inżynierii biomedycznej. Warszawa: Akademicka Oficyna Wydawnicza EXIT 2013 in Polish].
- 29. StatSoft. Neural network architectures. Available at: http://documentation.statsoft.com, Accessed: 3 May 2013.
- 30. Tadeusiewicz R, Duch W, Korbicz J, editors. Biocybernetyka i inżynieria biomedyczna, Tom 6 Sieci neuronowe, 1st ed. Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2000 in Polish].
- 31. Zar JH. Biostatistical analysis, 5th ed. Cambridge: Pearson, 2011.
- 32. Zhang C, Morrison GS, Enzinger E, Ochoa F. Effects of telephone transmission on the performance of formant-trajectory-based forensic voice comparison - female voices. Speech Commun 2013:55:796-813.
- 33. Champod Ch, Meuwly D. The inference of identity in forensic speaker recognition. Speech Commun 2003:31:193-203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3bba1e9-51c7-47f4-aa9b-9c2a4015e233