PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controller area network standard for unmanned ground vehicles hydraulic systems in construction applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned vehicles occupy more and more space in the human environment. Mobile robots, being a significant part thereof, generate high technological requirements in order to meet the requirements of the end user. The main focus of the end users both in civil, and so called “defense and security” areas in the broadly defined segments of the construction industry should be on safety and efficiency of unmanned vehicles. It creates some requirements for their drive and control systems being supported among others by vision, communication and navigation systems. It is also important to mention the importance of specific design of manipulators to be used to fulfill the construction tasks. Control technologies are among the critical technologies in the efforts to achieve these requirements. This paper presents test stations for testing control systems and remote control system for work tools in the function of teleoperator using the CAN bus and vehicles which use hydrostatic drive systems based on the Controller Area Network (CAN) standard. The paper examines the potential for using a CAN bus for the control systems of modern unmanned ground vehicles that can be used in construction, and what limitations would possibly prevent their full use. It is exactly crucial for potential users of unmanned vehicles for construction industry applications to know whether their specific requirements basing on the tasks typical in construction [9] may be fulfilled or not when using the CAN bus standard.
Twórcy
  • ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02- 486 Warsaw, Poland
autor
  • Military University of Technology (WAT), ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology (WAT), ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] S. K. Gurram and J. M. Conrad, “Implementation of CAN bus in an autonomous all-terrain vehicle”.
  • [2] W. Baek, S. Jang, H. Song, S. Kim, B. Song and D. Chwa, “A CAN-based Distributed Control System for Autonomous All-Terrain Vehicle (ATV)”,IFAC Proceedings Volumes, vol. 41, no. 2, 2008, 9505–9510,DOI: 10.3182/20080706-5-KR-1001.01607.
  • [3] V. D. Kokane and S. B. Kalyankar, “Implementation of the CAN Bus in the Vehicle Based on ARM 7”, IJRET: International Journal of Research in Engineering and Technology, vol. 4, no. 1, 2015, 29–31.
  • [4] “Introduction to Quantitative Research Methods”. M. T. Smith, https://people.kth.se/~maguire/courses/II2202/ii2202_intro_to_quantitative_methods_2012_MTS_Lecture5a.pdf. Accessed on: 2020-05-28.
  • [5] “Introduction to Qualitative Research”. www.blackwellpublishing.com/content/BPL_Images/Content_store/Sample_chapter/9780632052844/001-025[1].pdf. Accessed on: 2020-05-28.
  • [6] A. Bartnicki, M. J. Łopatka, L. Śnieżek, J. Wrona and A. M. Nawrat, “Concept of Implementation of Remote Control Systems into Manned Armoured Ground Tracked Vehicles”. In: InnovativeControl Systems for Tracked Vehicle Platforms, 2014, 19–37,DOI: 10.1007/978-3-319-04624-2_2.
  • [7] “History of the CAN technology”, CAN in Automation (CiA), www.can-cia.org/can-knowledge/can/can-history. Accessed on: 2020-06-19.
  • [8] S. Corrigan, Introduction to the Controller Area Network (CAN), Application Report, SLOA101B, Texas Instruments, 2002.
  • [9] Y. Ban, “Unmanned Construction System: Present Status and Challenges”. In: Proceedings of the 19th ISARC, 2002, 241-246, DOI: 10.22260/ISARC2002/0038.
  • [10] “INSPECTOR: robot for inspection and intervention”. Industrial Research Institute for Automation and Measurements PIAP, http://antiterrorism.eu/wp-content/uploads/inspector-en.pdf. Accessed on: 2020-05-28.
  • [11] “PVED-CC Series 4 Electrohydraulic Actuator Technical Information Manual”. Danfoss, https://assets.danfoss.com/documents/DOC152886483924/DOC152886483924.pdf.Accessed on: 2020-05-28.
  • [12] “PLUS+1® MC microcontrollers”. Danfoss,https://www.danfoss.com/en/products/electronic-controls/dps/plus1-controllers/plus1--mc-microcontrollers/#tab-overview. Accessed on: 2020-05-28.
  • [13] “IBIS®: robot for pyrotechnic operations and reconnaissance”. Industrial Research Institute for Automation and Measurements PIAP,http://antiterrorism.eu/wp-content/uploads/ibis-en.pdf. Accessed on: 2020-05-28.
  • [14] “RMI: mobile robot for intervention”. Industrial Research Institute for Automation and Measurements PIAP, http://antiterrorism.eu/wp-content/uploads/piap-rmi-en.pdf. Accessed on: 2020-05-28.
  • [15] “EXPERT: neutralizing and assisting robot”. Industrial Research Institute for Automation and Measurements PIAP, http://antiterrorism.eu/wp-content/uploads/expert-en.pdf. Accessed on: 2020-05-28.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3b8a01e-5330-4cd9-b889-4d5d6fabac4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.