Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-c3b28825-d58e-4cee-9fb6-2adb4edc9c0a

Czasopismo

Bulletin of the Polish Academy of Sciences. Technical Sciences

Tytuł artykułu

Study on coal microstructure for porosity levels assessment

Autorzy Miedzińska, D.  Niezgoda, T.  Małek, E.  Zasada, D. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The problem of methane existence in coal beds has been known for many years. It was and still it is a danger to coalminers. The aim of the research, presented in the paper, is to show and assess the porosity structure (especially micro and nanoporosity) in accordance to the dimensions of carbon dioxide particle. The characteristic surface morphology of the sample and the disclosure of the carbon porous structure have been obtained using the scanning electron microscope (SEM). The presented study of the coal microstructure is a part of the coal demethanation method with the use of liquid CO2, that has been proposed by the Military University of Technology.
Słowa kluczowe
EN coal   methane   carbon dioxide   coalbed methane  
Wydawca Polska Akademia Nauk, Wydział IV Nauk Technicznych
Czasopismo Bulletin of the Polish Academy of Sciences. Technical Sciences
Rocznik 2013
Tom Vol. 61, nr 2
Strony 499--505
Opis fizyczny Bibliogr. 26 poz., rys., tab., il.
Twórcy
autor Miedzińska, D.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland
autor Niezgoda, T.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland
autor Małek, E.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland
autor Zasada, D.
  • Department of Chemistry and New Technologies, Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland, dmiedzinska@wat.edu.pl
Bibliografia
[1] A. Gonet, S. Nagy, C. Rybicki, J. Siemek, S. Stryczek, and R. Wiśniowski, “Technology of coalbed methane (CBM) extraction”, Mining and Geology 5, 3 (2010), (in Polish).
[2] A.C. Bumb and C.R. McKee, “Gas-well testing in the presence of desorption for coalbed methane and devonian shale”, SPEFormation Evaluation 1, CD-ROM (1988).
[3] J. Hagoort, “Fundamentals of gas reservoir engineering”, Developmentsin Petroleum Science 23, 328 (1988).
[4] S. Harpalani and A.R. Schraufnagel, “Influence of matrix shrinkage and compressibility on gas production from coalbed methane reservoirs”, Paper SPE 20729, ProcSPE Annual TechnicalConference and Exhibition 1, CD-ROM (1990)
[5] K. Giljarhus, S. Munkejord, and G. Skaugen,“Solution of the Span-Wagner equation of state using a density-energy state function for fluid-dynamic simulation of carbon dioxide”, SINTEFEnergy Research 51, 1006-1012 (2012).
[6] Z.J.Wei, A.M. Liao, H.X. Zhang, J. Liu, and S.T. Jiang, “Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology”, BioresourceTechnology 100, 4214-4219 (2009).
[7] R.P. Hattenbach, M. Wilson, and K.R. Brown, “Capture of carbon dioxide from coal combustion and its utilization for enhanced oil recovery”, GHGT-4 Conf. 1, CD-ROM (2000).
[8] A. Kalantari-Dahaghi, “Numerical simulations and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs”, SPE 1, CD-ROM (2010).
[9] Z. Xue, D. Tanase, H. Saito, D. Nobuoka, and J. Watanabe, “Time-lapse crosswell seismic tomography and well logging to monitor the injected CO2 in an onshore aquifer”, 75th AnnualInt. Meeting, SEG, Expanded Abstracts 75, 1433-1437 (2005).
[10] S.L. Nooner, O. Eiken, C. Hermanrud, G.S. Sasagawa, T. Stenvold, and M.A. Zumberge, “Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements”, Int. J. Greenhouse Gas Control 1, 198-214 (2007).
[11] T. Ishida, K. Maekawa and M. Soltani, “Theoretically identified strong coupling of carbonation rate and thermodynamic moisture states in micropores of concrete”, J. Advanced ConcreteTechnology 2, 213-222 (2004).
[12] IPCC, IPCC Special Report on Carbon Dioxide Capture andStorage, Cambridge University Press, Cambridge, 2005.
[13] IPCC, Climate Change 2007: Mitigation. Contribution of WorkingGroup III to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change, Cambridge UniversityPress, Cambridge University Press, Cambridge, 2007.
[14] C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, and H.W. Pennline, “Separation and capture of CO2 from large stationary sources and sequestration in geological formations - coalbeds and deep saline aquifers”, J. Air Waste Manage. Assoc. 53 (6), 645-715 (2003).
[15] M.Mazzotti, R. Pini and G. Storti, “Enhanced coalbed methane recovery”, J. Supercritical Fluids 47, 619-627 (2009).
[16] S.R. Reeves, “The Coal-Seq project: key results from field, laboratory, and modeling studies”, Proc. 7th Int. Conf. on GreenhouseGas Control Technologies 1, CD-ROM (2004).
[17] W.D. Gunter, M.J. Mavor, and J.R. Robinson, “CO2 storage and enhanced methane production: field testing at the Fenn- Big Valley, Alberta, Canada, with application”, Proc. 7th Int. Conf. on Greenhouse Gas Control Technologies 1, CD-ROM (2004).
[18] F. Van Bergen, H. Pagnier, and P. Krzystolik, “Field experiment of CO2-ECBM in the Upper Silesian Basin of Poland”, Proc. 7th Int. Conf. on Greenhouse Gas Control Technologies 1, CD-ROM (2006).
[19] S. Wong, D. Law, X. Deng, J. Robinson, B. Kadatz, W.D. Gunter, J. Ye, S. Feng, and Z. Fan, “Enhanced coalbed methane - micro-pilot test at South Qinshui, Shanxi”, Proc.7th Int. Conf. on Greenhouse Gas Control Technologies 1, CDROM (2006).
[20] S. Yamaguchi, K. Ohga, M. Fujioka, M. Nako, and S. Muto, “Field experiment of Japan CO2geosequestration in coal seams project (JCOP)”, Proc. 7th Int. Conf. on GreenhouseGas Control Technologies 1, CD-ROM (2006).
[21] X.R.Wei, P. Massarotto, G. Wang, V. Rudolph, and S.D. Golding, “CO2 sequestration in coals and enhanced coalbed methane recovery: new numerical approach”, Fuel 89 (5), 1110-1118 (2010).
[22] X.R. Wei, G.X. Wang, P. Massarotto, S.D. Golding, and V. Rudolph, “Modelling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory”, AIChE J. 53, 3241-52 (2007).
[23] X.R. Wei, G.X. Wang, P. Massarotto, S.D. Golding, and V. Rudolph, “Numerical simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced coalbed methane recovery”, Chemical Eng. Science 62, 4193-203 (2007).
[24] E. Ruckenstein, A.S. Vaidyanathan, and G.R. Youngquist, “Sorption by solid with bidisperse pore structures”, ChemicalEng. Science 26 (9), 13051318(1971).
[25] A. Busch, Y. Gensterblum, B.M. Krooss, and N. Siemons, “Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: An experimental study”, Int. J. Coal Geology 66, 53-68 (2006).
[26] G. Ceglarska-Stefańska, A. Nodzeński, and S. Hołda, “Investigations of the system coal-gas in the aspect of metane recovery and the CO2 sequestration”, Management of Mineral Materials 23, 51-59 (2007), (in Polish).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-c3b28825-d58e-4cee-9fb6-2adb4edc9c0a
Identyfikatory