Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microcystis blooms and the related toxin known as microcystin-LR (MC-LR) put the safety of human water consumption and global irrigation practices in jeopardy. MC-LR is widely distributed in various environments, including water, sediments, plants, and other aquatic organisms. The use of water-containing microcystins for agricultural purposes may have to be restricted despite the limited availability of clean water resources. Accordingly, the present work aimed to determine the MC-LR concentrations and recognize the environmental parameters that initiate the growth of toxic cyanobacteria and MC-LR occurrence in 20 irrigation ponds in the Jordan Valley area. The irrigation ponds studied were found in a hypereutrophic condition, with high levels of N:P ratio and low transparency. These cause inseparable effects such as cyanobacterial bloom and MC-LR occurrence. The investigated ponds were classified as hypereutrophic according to General Quality Index (GQI), with two different types of algae covering the surface. The first was the Lemna sp. or duckweeds (Family Araceae) which are free-floating masses, and the second was the cyanobacteria algal bloom. Unpaired t-tests were performed and showed that the concentrations of MC-LR in pond water abundant with cyanobacteria algal bloom in September 2021 were significantly higher (P = 0.7906) than in June for the same year (0.3022 ± 0.0444 and 0.1048 ± 0.0171 ppb, respectively). Two methods for extracting MC-LR were used and showed a significant difference in MC-LR concentration in ponds with an abundance of cyanobacteria algal blooms (0.2273 ± 0.0356 ppb) compared to the ponds with an abundance of Lemna sp. or duckweeds collected in June 2021 (0.1048 ± 0.0171 ppb). Despite all of the efforts made by Jordan Valley farmers to prevent or limit the mass growth of cyanobacteria and its consequences for the eutrophication process in their irrigation ponds through the use of fish breading and chemicals such as copper sulfate, this environmental problem is still harming their crops and irrigation methods and requires immediate government assistance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
36--53
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Environmental Hydrogeochemistry, The University of Jordan, School of Science, Department of Geology, Amman, Jordan
autor
- Water Quality and Hydrochemistry, The University of Jordan, School of Science, Department of Geology, Amman, Jordan
autor
- Physiology & Endocrinology, Al-Ahliyya Amman University (AAU), Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Salt, Jordan
autor
- Geology-Paleontology, The University of Jordan, School of Science, Department of Geology, Amman, Jordan
autor
- Molecular and Microbial Ecology, The University of Jordan, School of Science, Department of Biological Sciences, Amman, Jordan
Bibliografia
- 1. Acuña-Alonso, C., Álvarez, X., Lorenzo, O, Cancela, A., Valero, E., Sánchez, A. 2022. Assessment of water quality in eutrophized water bodies through the application of indexes and toxicity, 728, 138775. https://doi.org/10.1016/j.scitotenv.2020.138775
- 2. Al Kuisi, M., Al Jazzar, T., Rude, T., Margana A. 2008. Impact of the use of reclaimed water on the quality of groundwater resources in the Jordan Valley, Jordan. Clean – Soil, Air, Water, 36, 12, 1001–1014. https://doi.org/10.1002/clen.200700190
- 3. Al Kuisi, M., Mashal, K., Al-Qinna, M., Hamad, A.A., Margana, A. 2014. Groundwater vulnerability and hazard mapping in an arid region: case study, Amman-Zarqa Basin (AZB)-Jordan. Journal of Water Resource and Protection, 6, 297–318. http://dx.doi.org/10.4236/jwarp.2014.64033
- 4. Al-Jassabi, S., Khalil, A.M. 2006. Initial report on identification and toxicity of Microcystis in King Talal Reservoirs. Lakes & Reservoirs: Research and Management, 11, 125–129. https://doi.org/10.1111/j.1440-1770.2006.00294.x
- 5. Arnold, D., Greenberg, H., Andrew D. 2017. Standards methods for the examination of water and wastewater 23 edition. Washington, DC: American Public Health Association.
- 6. Ayyash, H., Battah, A.Q. 2013. Identification and Quantification of Microcystins in the major water reservoirs present in Jordan, Thesis. University of Jordan.
- 7. Bacu A., Zaho I. 2022. Determining environmental factors that may influence cyanobacteria bloom formation in lake Butrinti, Albania. Journal of Environmental Protection and Ecology, 23(1), 1–8.
- 8. Babica, P. Blaha, L. and Maršalek, B. 2006. Exploring the natural role of microcystins a review of effects on photoautotrophic organisms. J. Phycol., 42, 9–20. http://doi.10.1111/j.1529-8817.2006.00176.x
- 9. Carmichael, W., He, J-W., Eschedo, J., He, Z-R., Juan, Y-M. 1988. Partial structural determination of hepatotoxic peptides from Microcystis aeruginosa (cyanobacterium) collected in ponds of central China. Toxicon, 26, 1213 ± 1217. http://doi.10.1016/0041-0101(88)90307-8
- 10. Cordoba, E.B., Martinez, A.C., Ferrer, E.V. 2010. Water quality indicators: comparison of a probabilistic index and a general quality index. The case of the Confederación Hidrográfica del Júcar (Spain). Ecol. Indic., 10(5), 1049–1054. https://doi.10.1016/j.ecolind.2010.01.013
- 11. Department of Statistics (DOS) 2022. National Accounts. Available from: http://dosweb.dos.gov.jo/
- 12. Graham, L., Dubrovsky, M., Foster, M., King, R., Loftin, A., Rosen, H., Stelzer, A. 2020. Cyanotoxin occurrence in large rivers of the United States. Inland Waters, 10(1), 109–117. http://doi.10.1080/20442041.2019.1700749
- 13. Hayart, T., Al Kuisi M., Saffarini, G. 2022. Assessment of groundwater quality using water quality index (WQI) and multivariate statistical analysis in Amman-Zarqa area/Jordan. Water Practice & Technology, 17(8), 1582. https://doi.10.2166/wpt.2022.076
- 14. Havens, K.E., Ji, G., Beaver, J.R., Fulton, R.S., Teacher, C.E. 2019. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia, 829(1), 43–59. https://doi.10.1007/s10750-017-3425-7
- 15. Hoyer M., Terrell J., Canfield C. 2015. Chain of eutrophication models for assessing the potential impact of nutrient enrichment on Choctawhatchee Bay, FL, USA. Florida Scientist, 78(1), 20–36.
- 16. Jordanian Reclaimed Wastewater Standard (JRW) 2009. Technical Regulation for Reclaimed Domestic Wastewater. JS893/2002, Jordan Institution for Standards and Metrology, Amman, Jordan.
- 17. Kardinaal W.E.A. Tonk L. Janse I. Hol S. Slot P., Huisman J. Visser P.M. 2007. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol, 73, 2939–2946. https://doi.10.1128/AEM.02892-06
- 18. Ko márek, J., Kaštovský, J., Mareš J., Johansen J. 2014 Taxonomicclassification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Preslia, 86, 295–335.
- 19. Maznah,. O. Mansor, M. 2002. Aquatic pollution assessment based on attached diatom communities in the Penang River Basin, Malaysia. Hydrobiologia, 487, 229–241. https://doi.org/10.1023/A:1022942200740
- 20. Mutoti, M., Gumbo, J., Jideani, A. 2022. Occurrence of cyanobacteria in water used for food production: A review. Physics and Chemistry of the Earth, 125(2022), 103101 https://doi.org/10.1016/j.pce.2021.103101
- 21. Paerl, H.W. 2014. Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. Life, 4, 988–1012. https://doi.10.3390/life4040988
- 22. Passos, L., de Almeida E, Villela A., Fernandes A., Marinho M., Gomes, L., Pinto E. 2022. Cyanotoxins and water quality parameters as risk assessment indicators for aquatic life in reservoirs, Ecotoxicology and Environmental Safety, 241, 113828. https://doi.org/10.1016/j.ecoenv.2022.113828
- 23. Pikosz, M., Messyasz, B. 2015. New data on distribution, morphology and ecology of Oedogonium capillare Kützing ex Hirn (Oedogoniales, Chlorophyta) in Poland. Biodiversity Research and Conservation; Poznan, 40(1), 21-26. https://doi.org/10.1515/biorc-2015-0032
- 24. Piper, A.M. 1944. A graphical procedure in the chemical interpretation of groundwater analysis. Transactions, American Geophysical Union, 25(6), 914–923. https://doi.org/10.1029/TR025i006p00914
- 25. Shamout M., Oran S., Fayyad M. 2008. The application of duckweed (Lemna sp.) in wastewater treatment in Jordan. International Journal of Environment and Pollution., 33(1), 110-120. https://doi.org/10.1504/IJEP.2008.018472
- 26. Sheng, J., He, M., Yu, S., Shi, H., Qian, Y. 2007. Microcystin-LR detection based on indirect competitive enzyme-linked immunosorbent assay. Frontiers of Environmental Science & Engineering in China, 1(3), 329–333. https://doi.10.1007/s11783-007-0056-7
- 27. Sivonen, K., Jones, G. 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. E&FN Spon, London, 41–111.
- 28. Sumner, M.E. 1993. Sodic soils: new perspectives. Australian Journal of Soil Research, 31, 683-750
- 29. Suareza, D., Wooda, J., Lesch, S. 2006. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agricultural Water Management, 86(1–2), 150–164. https://doi.org/10.1016/j.agwat.2006.07.010
- 30. Taş, B., Yılmaz, Ö., Kurt, I. 2015. Epipelic Diatoms as Indicators of Water Quality in the Lower Part of River Melet (Ordu, Türkiye). Turkish Journal of Agriculture – Food Science and Technology, 3(7), 610–616.
- 31. Trifirò, G., Barbaro, E., Gambaro, A., Vita, V., Clausi, M.T., Franchino, C., Palumbo, M.P., Floridi, F., De Pace, R. 2016. Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops. Analytical and bioanalytical chemistry, 408(27), 7699–7708. https://doi.org/10.1007/s00216-016-9867-3
- 32. Trobajo, R., Clavero, E., Chepurnov, V.A., Sabbe, K., Mann, D.G., Ishihara, S., Cox, E.J. 2009. Morphological, genetic and mating diversity within the widespread bioindicator Nitzschiapalea (Bacillariophyceae). Phycologia, 48(6), 443–459. https://doi.org/10.2216/08-69.1
- 33. UNESCO, 2020. The United Nations World Water Development Report 2020. Water and Climate Change, Berghahn, Paris and New York. https://unesdoc.unesco.org/ark:/48223/pf0000372985/PDF/372985eng.pdf.multi.
- 34. World Health Organization (WHO), 2018. Guidelines for Drinking-water Quality Second Addendum to Third Edition WHO Library Cataloguing-in-Publication Data 2008, 17–19. https://doi.org/10.1016/S1462–0758(00)00006–6
- 35. Westrick J., Szlag D., Southwell S., Sinclair J. 2009. A review of cyanobacteria and cyanotoxins removal/ inactivation in drinking water treatment. Anal Bioanal Chem, 2010, 397, 1705–1714. https://doi.10.1007/s00216-010-3709-5
- 36. Yusuf, Z.H. 2020. Phytoplankton as bioindicators of water quality in Nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia, 32(e4). https://doi.10.1590/s2179-975x3319
- 37. Zeck, A., Eikenberg, A., Weller, M.G., Niessner, R. 2001. Highly sensitive immunoassay based on a monoclonal antibody specific for [4-arginine] microcystins. Analytica Chimica Acta, 441(1), 1–13. https://doi.10.1016/S0003-2670(01)01092-3
- 38. Zepernick, B.N., Gann, E.R., Martin, R.M., Pound, H.L., Krausfeldt, L.E., Chaffin, J.D., Wilhelm, S.W. 2021. Elevated pH Conditions Associated with Microcystis spp. Blooms Decrease Viability of the Cultured Diatom Fragilaria crotonensis and Natural Diatoms in Lake Erie. Front. Microbiol, 12, 598736. https://doi.10.3389/fmicb.2021.598736
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3aed822-1d1d-426d-bac9-f3cd7b8b00bb