Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The escalating accumulation of polypropylene (PP) plastic waste poses significant environmental challenges, requiring innovative waste management strategies. Pyrolysis of plastic waste presents a promising approach for sustainable production of alternative fuels. However, pyrolysis oil possesses undesirable properties for direct fuel applications, requiring additional upgrading steps before being utilized for specific purposes. Fractionation offers an effective method for the separation of pyrolysis oil. This study investigates the pyrolysis of PP plastic waste with three-stage condensers system, focusing on the effect of temperature and fractional condensation on the yield and characteristics of pyrolysis oil. Experiments were conducted within temperature range of 400, 410, 425, 430, 440, to 450 °C, with the aim of optimizing the generation of liquid products. The pyrolysis vapors were sequentially passed through three condensers. Results indicate that the maximum bio-oil was obtained at 450 °C as optimum temperature, which consists of 2.32% gases (C1–C5), 41.94% gasoline (C6–C11), 44.15% kerosene (C12–C20), and 11.59% residue (> C20). The distribution of compounds was influenced by fractional condensers, with the highest relative contents of compounds obtained from condenser 1, 2, and 3 were gasoline (79.28%), kerosene (51.97%), and gasoline (55.21%), respectively. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the chemical and physical properties of bio-oils. The characterization results reveal that the pyrolysis oil obtained from PP plastic waste are dominated with 1-heptene-5-methyl (C8H16). The composition of pyrolysis oil demonstrated favourable and suitable properties for potential applications as renewable fuels and chemical feedstocks.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
163--172
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani Banguntapan, Bantul, Yogyakarta 55191, Indonesia
autor
- Department of Mechanical Engineering, Janabadra University, Jalan TR Mataram 55-57 Yogyakarta 55231, Indonesia
autor
- Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani Banguntapan, Bantul, Yogyakarta 55191, Indonesia
autor
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani Banguntapan, Bantul, Yogyakarta 55191, Indonesia
autor
- Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
autor
- Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Karangmalang, Yogyakarta 55281, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
Bibliografia
- 1. Aboelela, D., Saleh, H., Attia, A.M., Elhenawy, Y., Majozi, T., Bassyouni, M., (2023). Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability, 15, 11238. https://doi.org/10.3390/su151411238
- 2. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K., (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. https://doi.org/10.1016/j.enconman.2016.02.037
- 3. Chai, M., He, Y., Nishu, Sun, C., Liu, R., (2020). Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis. Journal of the Energy Institute, 93, 811–821. https://doi.org/10.1016/j.joei.2019.05.001
- 4. Chang, S.H., (2023). Plastic waste as pyrolysis feedstock for plastic oil production: A review. Science of The Total Environment, 877, 162719. https://doi.org/10.1016/j.scitotenv.2023.162719
- 5. Dai, L., Lata, S., Cobb, K., Zou, R., Lei, H., Chen, P., Ruan, R., (2024). Recent advances in polyolefinic plastic pyrolysis to produce fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 180, 106551. https://doi.org/10.1016/j.jaap.2024.106551
- 6. Desnia, E., Rosie, E., Hartono, S.B., Simanullang, W.F., Anggorowati, A.A., Lourentius, S., (2024). Optimization of pyroliysis of polypropylene and polyethylene based plastic waste become an alternative oil fuel using bentonite catalyst. E3S Web Conf. 475, 05006. https://doi.org/10.1051/e3sconf/202447505006
- 7. Faisal, F., Rasul, M.G., Ahmed Chowdhury, A., Schaller, D., Jahirul, M.I., (2023). Uncovering the differences: A comparison of properties of crude plastic pyrolytic oil and distilled and hydrotreated plastic diesel produced from waste and virgin plastics as automobile fuels. Fuel, 350, 128743. https://doi.org/10.1016/j.fuel.2023.128743
- 8. Gonzalez-Aguilar, A.M., Cabrera-Madera, V.P., Vera-Rozo, J.R., Riesco-Ávila, J.M., (2022). Effects of heating rate and temperature on the thermal pyrolysis of expanded polystyrene post-industrial waste. Polymers, 14, 4957. https://doi.org/10.3390/polym14224957
- 9. Habyarimana, J.B., Njiemon, M., Abdulnasir, R., Neksumi, M., Yahaya, M., Sylvester, O., Joseph, I., Okoro, L., Agboola, B., Uche, O., Jahng, W.J., (2017). Synthesis of hydrocarbon fuel by thermal catalytic cracking of polypropylene. IJSER, 8, 1193– 1202. https://doi.org/10.14299/ijser.2017.01.014
- 10. Hasan, M.M., Rasul, M.G., Jahirul, M.I., Khan, M.M.K., (2023). Characterization of pyrolysis oil produced from organic and plastic wastes using an auger reactor. Energy Conversion and Management, 278, 116723. https://doi.org/10.1016/j.enconman.2023.116723
- 11. Hassibi, N., Quiring, Y., Carré, V., Aubriet, F., Vernex-Loset, L., Mauviel, G., Burklé-Vitzthum, V., (2023). Analysis and control of products obtained from pyrolysis of polypropylene using a reflux semi-batch reactor and GC-MS/FID and FT-ICR MS. Journal of Analytical and Applied Pyrolysis, 169, 105826. https://doi.org/10.1016/j.jaap.2022.105826
- 12. Jung, S.-H., Cho, M.-H., Kang, B.-S., Kim, J.-S., (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91, 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009
- 13. Khazaal, R.M., Abdulaaima, D.A., (2023). Valuable oil recovery from plastic wastes via pressurized thermal and catalytic pyrolysis. Energy Conversion and Management: X 20, 100430. https://doi.org/10.1016/j.ecmx.2023.100430
- 14. Kim, J.-S., (2015). Production, separation and applications of phenolic-rich bio-oil – A review. Bioresource Technology, 178, 90–98. https://doi.org/10.1016/j.biortech.2014.08.121
- 15. Kumar, Rakesh, Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P.K., Kumar, Ritesh, Kumar, P., Shubham, Das, S., Sharma, P., Vara Prasad, P.V., (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13, 9963. https://doi.org/10.3390/su13179963
- 16. Kumar, S., Panda, A.K., Singh, R.K., (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55, 893–910. https://doi.org/10.1016/j. resconrec.2011.05.005
- 17. Kumar, S., Singh, R.K., (2011). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz. J. Chem. Eng. 28, 659–667. https://doi.org/10.1590/S0104-66322011000400011
- 18. Majewsky, M., Bitter, H., Eiche, E., Horn, H., (2016). Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of The Total Environment, 568, 507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017
- 19. Mati, A., Buffi, M., Dell’Orco, S., Lombardi, G., Ruiz Ramiro, P., Kersten, S., Chiaramonti, D., (2022). Fractional condensation of fast pyrolysis bio-oil to improve biocrude quality towards alternative fuels production. Applied Sciences, 12, 4822. https://doi.org/10.3390/app12104822
- 20. Mohamed, A.R., Hamzah, Z., Daud, M.Z.M., (2014). The effects of process parameters on the pyrolysis of empty fruit bunch (EFB) using a fixed-bed reactor. AMR, 925, 115–119. https://doi.org/10.4028/www. scientific.net/AMR.925.115
- 21. Mortezaeikia, V., Tavakoli, O., Khodaparasti, M.S., (2021). A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 160, 105340. https://doi.org/10.1016/j. jaap.2021.105340
- 22. Nayanathara Thathsarani Pilapitiya, P.G.C., Ratnayake, A.S., (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
- 23. Raymundo, L.M., Mullen, C.A., Elkasabi, Y., Strahan, G.D., Boateng, A.A., Trierweiler, L.F., Trierweiler, J.O., (2022). Online separation of biomass fast-pyrolysis liquids via fractional condensation. Energy Fuels, 36, 13094–13104. https://doi.org/10.1021/acs.energyfuels.2c02624
- 24. Riesco-Avila, J.M., Vera-Rozo, J.R., Rodríguez- Valderrama, D.A., Pardo-Cely, D.M., Ramón-Valencia, B., 2022. Effects of heating rate and temperature on the yield of thermal pyrolysis of a random waste plastic mixture. Sustainability, 14, 9026. https://doi.org/10.3390/su14159026
- 25. Sui, H., Yang, H., Shao, J., Wang, X., Li, Y., Chen, H., 2014. Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk. Energy Fuels, 28, 5095–5102. https://doi.org/10.1021/ef5006012
- 26. Thahir, R., Irwan, M., Alwathan, A., Ramli, R., (2021). Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results in Engineering, 11, 100231. https://doi.org/10.1016/j. rineng.2021.100231
- 27. Tumbalam Gooty, A., Li, D., Briens, C., Berruti, F., (2014). Fractional condensation of bio-oil vapors produced from birch bark pyrolysis. Separation and Purification Technology, 124, 81–88. https://doi.org/10.1016/j.seppur.2014.01.003
- 28. Wang, C., Luo, Z., Diao, R., Zhu, X., (2019). Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil. Bioresource Technology, 285, 121370. https://doi.org/10.1016/j. biortech.2019.121370
- 29. Wang, Y., Xu, J., Liu, X., Chen, M., Wang, S., (2015). Study of determination of oil mixture components content based on Quasi-Monte Carlo method. Spectroscopy and Spectral Analysis, 35, 1312–1315. https://doi.org/10.3964/j. issn.1000-0593(2015)05-1312-04
- 30. Westerhof, R.J.M., Brilman, D.W.F., Garcia-Perez, M., Wang, Z., Oudenhoven, S.R.G., Van Swaaij, W.P.M., Kersten, S.R.A., (2011). Fractional condensation of biomass pyrolysis vapors. Energy Fuels, 25, 1817–1829. https://doi.org/10.1021/ef2000322
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3adcae8-28ab-4db1-818b-ff98e73d92bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.