PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and physicochemical properties of pectin/chitosan scaffolds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scaffolds from chitosan and its combinations with other polymers are widely used for tissue engineering application. This is due to the favourable biological properties of chitosan such as antimicrobial activity, biocompatibility, biodegradability, cell adhesion and proliferation, etc. The aim of the study was the creation of 3D porous scaffolds based on pectin/chitosan polyelectrolyte complexes and study the influence of components ratio on their physico-chemical properties, as well as degradation behaviour in solutions modelling the media of the human body. Porous “sponge-like” polysaccharide films were produced using freeze-drying technique from gel-like pectin-chitosan polyelectrolyte complexes. The weight ratio of chitosan:pectin in complexes was varied in the range from 1:1 to 1:2. Obtained samples were characterized by infrared spectroscopy and scanning electron microscopy. It has been shown that pectin-chitosan films turned out to have sponge-like structure with highly interconnected pores with the size about 50-300 μm. It has been determined that all samples regardless of the chitosan:pectin ratio possess high swelling properties. The degradation profile of scaffolds in different media was studied. It has been determined that the largest weight loss is observed in water and reaches more than 80% after 1 day, while in NaCl and PBS solutions weight loss is approximately 50-60% after 25 days. For samples with different chitosan:pectin weight ratio, weight loss slightly rise with increasing amount of pectin. It has been shown that mesenchymal stem cells adhered to the surface of obtained pectin:chitosan porous scaffolds in viable state. Hence, it can be served as a potential material for tissue engineering applications.
Słowa kluczowe
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 22 poz., wykr., zdj.
Twórcy
  • Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, 36 F. Skaryna str., Minsk, Belarus, 220141
  • Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, 36 F. Skaryna str., Minsk, Belarus, 220141
autor
  • Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, 36 F. Skaryna str., Minsk, Belarus, 220141
Bibliografia
  • [1] Philipp B., Dautzenberg H., Linow K-J., Kötz J., Dawydoff W.: Polyelectrolyte complexes - recent developments and open problems. Prog. Polym. Sci. 14 (1989) 91-172.
  • [2] Il’ina A.V., Varlamov V.P.: Chitosan-Based Polyelectrolyte Complexes: A Review. Applied Biochemistry and Microbiology 41 (2005) 9-12.
  • [3] Recillas M, Silva L.L., Peniche C., Goycoolea F.M., Rinaudo M., Román J.S., Argüelles-Monal W.M.: Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers 86 (2011) 1336-1343.
  • [4] Inamdar N., Mourya V. K.: Chapter 15. Chitosan and anionic polymers – complex formation and application. Polysaccharides: development, properties and application (Edited by Tiwari A. New Delhi: Nova Science Publishers Inc.) (2010) 333-377.
  • [5] Krayukhina M.A., Samoilova N.A., Yamskov I.A.: Polyelectrolyte complexes of chitosan: formation, properties and applications. Russian Chemical Reviews 77 (2008) 799-815.
  • [6] Schatz C., Domard A., Viton C., Pichot,C., Delair Th.: Versatile and Efficient Formation of Colloids of Biopolymer-Based Polyelectrolyte Complexes. Biomacromolecules 5 (2004) 1882-1892.
  • [7] Shybaila T.N., Savitskaya T.A., Kislyakova T.A., Albulov A.I., Grinshpan D.D.: Chitosan-cellulose sulfate acetate complexation in acetic acid solutions. Colloid Journal 70 (2008) 661-665.
  • [8] Kim H.-J., Lee H.-C., Oh J.-S., Shin B.-A., Oh Ch.-S., Park R.-D., Yang K.-S., Cho Ch.-S.: Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. Journal of Biomaterials Science, Polymer Edition 10 (1999) 543-556.
  • [9] Hamman J.H.: Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine. Drugs. 8 (2010) 1305-1322.
  • [10] Martino A.D., Sittinger M., Risbud M.V.: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26 (2005) 5983-5990.
  • [11] Morris G.A., Kok M.S., Harding S.E., Aams G.G.: Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnology and Genetic Engineering Reviews 27 (2010) 257-284.
  • [12] Bigucci F., Luppi B., Cerchiara T., Sorrenti M., Bettinetti G., Rodriguez L., Zecchi V.: Chitosan/pectin polyelectrolyte complexes: selection of suitible preparative conditions for colon-specific delivery of vancomycin. European Journal of Pharmaceutical Sciences 35 (2008) 435-441.
  • [13] Coimbra P., Ferreira P., Sousa H.C., Batista P., Rodrigues M.A., Correia I.J., Gil M.H.: Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. International Journal of Biological Macromolecules 48 (2011) 112-118.
  • [14] Vacanti J. P, Langer R.: Tissue engineering. Science 260 (1993) 920-926.
  • [15] Ralet M-C., Dronnet V., Buchholt H.C., Thibault J.F.: Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydrate Research 336 (2001) 117-125.
  • [16] Birch N.P., Schiffman J.D.: Characterization of Self-Assembled Polyelectrolyte Complex Nanoparticles Formed from Chitosan and Pectin. Langmuir 30 (2014) 3441-3447.
  • [17] Ghaffari A., Navaee K., Oskoui M., Bayati K., Rafiee-Tehrani M.: Preparation and characterization of free mixed-film of pectin/ chitosan/Eudragit® RS intended for sigmoidal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 67 (2007) 175-186.
  • [18] Sinitsya A., Čopı́ková J., Prutyanov V., Skoblya S., Machovič V.: Amidation of highly methoxylated citrus pectin with primary amines. Carbohydr. Polym. 42 (2000) 359-368.
  • [19] Filippov M.P.: IR spectra of pectin films. J Appl Spectrosc. 17 (1972) 1052-1054.
  • [20] Lawrie G., Keen I., Drew B., Chandler-Temple A., Rintoul L., Fredericks P., Grøndahl L.: Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 8 (2007) 2533-2541.
  • [21] Nair L.S., Starnes,T., Ko J.-W. K., Laurencin C.T.: Development of Injectable Thermogelling Chitosan–Inorganic Phosphate Solutions for Biomedical Applications. Biomacromolecules 8 (2007) 3779-3785.
  • [22] Knaul J.Z., Hudson S.M., Creber K.A.M.: Improved Mechanical Properties of Chitosan Fibers. Journal of Applied Polymer Science 72 (1999) 1721-1732.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3a18663-854e-4512-8dbd-2b43784b099b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.