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Abstract. Computed tomography is one of the most significant diagnostic techniques in medicine. This work is focused on hard-field imaging,
where signals take a form of straight rays and the reconstructed image can be presented as a matrix with unknown pixels. Algebraic methods
for direct computation of the image have not been used in practice because of the scale of the problem and numerical errors appearing
in the solution. The aim of this work was to analyse the performance of direct algebraic algorithms for tomographic image reconstruction
including regularisation mechanism such as: generalised regularisation, Tikhonov regularisation, Twomey regularisation and ridge regression
(RR), as well as comparing the results with the filtered backprojection (FBP) as the reference method. The performed analyses demonstrated
that the regularised algebraic methods are more accurate than the commonly used FBP, and RR appeared the most precise among them.
Additionally it was shown that the invariant system matrix (inverted during calculations) can be easily determined by solving the forward
problem. Finally, potential directions of further research have been pointed out.

Key words: computed tomography, image reconstruction, algebraic approach, regularization methods.

1. Introduction

Computed tomography (CT) is one of the most significant and
simultaneously still most dynamically developing diagnostic
techniques in medicine nowadays, thus refining the image re-
construction methods is of a great practical importance. To-
mography can be differentiated into hard-field and soft-field
types. In hard-field tomography (as X-ray, magnetic resonance
or emission one) it is assumed that a high-energy signal prop-
agates rectilinearly and its attenuation is primary caused by
local energy absorption [1]. Conversely, in soft-field tomog-
raphy (as electrical impedance or optical diffusion one), also
other phenomena play a crucial role and the signals propa-
gate simultaneously between a source and a detector on many
ways dependent on local properties on an object under in-
vestigation [2]. Knowing the distribution of these properties
as well as the nature of the excitation used, it is possible to
apply the ray-tracing technique for finding the trajectory of a
signal beam between the transmitter and the receiver (as in
microwave or ultrasound tomography) [3].

This work focuses on hard-field tomography, where the
signal takes a form of a straight ray. In such conditions,
carrying out the discretisation of an investigated section, it
is possible to unambiguously associate the ray between the
transmitter and the receiver with definite image pixels (and
determining its width – also with a coincident fraction of a
given pixel area). In effect, the analysed section can be associ-
ated with a matrix (the system matrix) of coefficients that are
related to measured data by linear system of algebraic equa-
tions [1]. In practice (if possible) overdetermined systems of
equations are used, i.e. with the number of measurements ex-

ceeding the number of unknowns. Algebraic methods for di-
rect computation of the image (involving the inversion of the
system matrix), though conceptually straightforward, have not
been used because of the scale of the solved problem (large
matrices), resulting in hardware (RAM resources) and time
limits, as well as in numerical ill-conditioning, significantly
reducing the signal-to-noise ratio (SNR) in the reconstructed
image. However, a lot of iterative methods have been elabo-
rated. The most important group of such algorithms is based
on the Kaczmarz projection [4], developed further by Tana-
ba [5]. The advantage of the iterative calculations relies on
effective solving the large systems of equations, and the short-
coming is an approximate solution reached [1]. The most pop-
ular variants of the iterative algorithms include: the algebraic
reconstruction technique (ART) [6], simultaneous iterative re-
constructive technique (SIRT) [7], or simultaneous algebraic
reconstruction technique (SART) [3]. Another group of algo-
rithms for iterative solving the systems of equations utilise the
Gauss-Siedel method [8-10]. Their advantage follows from the
possibility of taking into account additional prior informant
on the reconstructed image during succeeding iterations.

The use of prior information enables the reduction of dis-
tortions in the retrieved image. In the algorithms of tomo-
graphic image reconstructions, most frequently it takes the
form of: nonnegativity of pixels [8, 10–12], a penalty term
for the non-smoothness of the solution [9–11, 13–17], or a
reference image [18, 19]. This prior knowledge plays a par-
ticular role in statistical iterative reconstruction (SIR) algo-
rithms, used for emission (PET and SPECT) and low-dose
X-ray tomography, where the image is retrieved from an unde-
termined system of equations, most often by applying knowl-
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edge on stochastic character of data and the Bayesian approach
[9, 14, 17, 20, 21]. The regularization mechanism is also used
to eliminate distortions following a strong correlation of da-
ta recorded by receiving coils in parallel magnetic resonance
imaging (MRI) [19, 22].

Dynamic development of computing technology, includ-
ing the use of multicore graphics processing units (GPU) and
comprehensive random access memories, prompts nowadays
to re-interest in direct algebraic methods. Moreover, the al-
gorithms for matrix inversion enable to include the regular-
ization mechanisms and to reduce the level of disturbances
in retrieved images. The quality of a reconstructed image de-
pends, however, not only on the regularization method itself,
but also on the regularization parameter. Too small its val-
ue leaves visible distortions in the image, and too large blurs
edges and details. Recently a method for automated selection
of the regularization parameter value, minimizing the total
mean-square error of reconstruction, was proposed [23].

The aim of this work is to analyse the performance of
the algorithms for tomographic image reconstruction by di-
rect inversion of the system matrix, including the regulari-
sation methods as: generalised, Tikhonov, Twomey regular-
isations and ridge regression, as well as comparing the re-
sults with filtered backprojection as the reference method. The
aforementioned method for automated selection of the regu-
larization parameter was applied. The paper shows also that
in hard-field tomography the system matrix is invariant (de-
pending only on the image size) and that the forward model
can be simulated to determine its elements instead of ana-
lyzing tediously the system geometry. Moreover, this matrix
can be calculated only once and used many times for a given
tomograph, fastening computations.

At the beginning of the article (Sec. 2), the theoretical fun-
damentals of the forward and inverse mapping in hard-field
tomography (including the discrete approach) are presented,
together with the regularization methods for image reconstruc-
tion, the used method for the selection of optimal regularisa-
tion parameter, the fast method for system matrix computation
and the performed simulation experiments. Section 3 contains
the results achieved, and their analysis is presented in Sec. 4.
In the end, the main conclusions following from the study are
presented.

2. Methods

2.1. The forward and inverse algorithms. In hard-field to-
mography, where one can assume rectilinear propagation of
a physical signal between the source and the detector, the re-
lation of measured ray attenuation on a way s to absorbing
properties f of the object specified at each point of its sec-
tion (x, y), can be described by integral operator. The emitted
(in parallel or fan geometry) beam of rays allows recording
one projection P (z, ϕ) of object’s properties on the Z axis,
forming an angle ϕ with the X axis of the Cartesian coordi-
nate system. This mapping is described by continuous Radon’s
transform [1]:

P (z, φ) =

∫

ray(z,φ)

f (x, y) ds

=

by∫

ay

bx∫

ax

f (x, y) δ (x cosφ + y sin φ − z)dxdy,

(1)

where δ is Dirac’s delta, and [ax, bx] and [ay , by] are the
coordinates limiting the image area in the XY system. The
Radon transform can be recognized as a continuous forward
model for hard-field tomography, and the projection values
derived for succeeding angles (analytically or numerically),
known as a sinogram, as a solution of the forward problem.

The inverse Radon transform is also known. It shows
how to find the distribution f(x, y) from measured projec-
tions P (z, ϕ). It is not however applied in practice, since
the required derivatives ∂P/∂z must be calculated from dis-
turbed data, that leads to large errors in the retrieved im-
age. In practice, the filtered backprojection method (FBP) is
used [1]. It relies on the calculation of the Fourier transform of
succeeding projections P (z, ϕ) and thereafter filtering them
by a filter developed in the frequency domain. In effect, a
set of filtered Fourier transforms is achieved. The transforms
are folded radially at subsequent angles ϕ, so the encoded
by them image possesses well defined slowly-variable prop-
erties (background) and poorly defined fast-variable features
(edges). Thus, before the final image reconstruction, a chosen
method of interpolation is used to calculate evenly distributed
values of the 2D FFT transform. The FBP, giving the inverse
problem solution, is a standard method for tomographic im-
age reconstruction, and it has been chosen as the reference
method in this study.

Besides the continuous Radon transform, also a discrete
approach for describing the projections can be applied. This
approach requires the image area to be subdivided into n×n
pixels with averaged absorptions fj (j = 1, 2, ..., N , where
N = n2) and to assume a narrow, but finite width of the ray
(it can be related to a detector size for instance). Then the
projection pi for the i-th ray (i = 1, 2, ..., M) is given by:

pi =

N∑

j=1

wijfj, (2)

where the weight wij is proportional to the joint section of
the i-th ray and the j-th pixel area [1]. Thus, the total discrete
forward model for rectilinear tomography has the following
matrix form:

p = Wf , (3)

where p = [pi]M×1, W = [wij ]M×N and f = [fj ]N×1.
The derived algebraic approach to tomography indicates

an alternative way of the inverse problem solving – the im-
age reconstruction by matrix inversion. To reduce noise in the
retrieved image, an overdetermined number of equations is
usually used (M > N ), so the pseudoinverse matrix should
be employed to find pixel values f̂ [2]:

f̂ =
(
WTW

)−1
WT p, (4)
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an operation equivalent to minimising the functional V (f) =

‖p − Wf‖2
2.

The discrete approach, besides it is a straightforward con-
cept, is also easy for computer implementation. Unluckily,
the required matrix inversion is numerically ill-conditioned in
tomography, that leads to uncontrolled propagation of aug-
mented disturbances form recorded projections p into the re-
constructed image f̂ . Reduction of this effect can be achieved
by regularisation of the inverse problem.

2.2. Regularization algorithms. There are plenty of ap-
proaches yielding the decrease of disturbances appearing in
the inverse problem solution when the matrix inversion is
numerically ill-conditioned. They were overviewed e.g. in
[24, 25]. One of them imposes constraints on the searched
solution by completing the functional V by the penalty term
Ω. This leads to the following form of regularised reconstruc-
tion procedure:

f̂R = argmin
f

VR (f) ,

VR (f) = V (f) + γΩ (f) ,
(5)

where γ is the regularisation parameter. The general form of
the penalty term is as follows:

Ω (f) = ‖D (f − f∗)‖
2
2 , (6)

where D is a discrete operator called the regularisation ma-
trix, and f∗ is a reference image. Recently it has been shown
that popular regularisation methods are specific cases of the
above described inverse problem [23], and they are analysed
in this study.

Applying the Tikhonov method (f∗ = 0) [26, 27], matrix
D was chosen as a spatial differential operator of the 1st order
(minimising the difference between a given pixel and its four
neighbours with conjoint edges):

f̂TH =
(
WTW + γDTD

)−1
WTp. (7)

In the Twomey method [28] (D = I), the image retrieved
by fast FBP was taken as f∗ (minimisation of the difference
between the reconstructed image and f∗):

f̂TW =
(
WT W + γI

)−1 (
WTp + γf∗

)
. (8)

A next method, the ridge regression [29] (D = I and
f∗ = 0), minimises the amplitude of the reconstructed image:

f̂RR =
(
WTW + γI

)−1
WTp. (9)

The last of the analysed approaches was the generalised
regularisation [23], taking into account both the regularization
matrix D and the reference image f∗:

f̂GR =
(
WTW + γDTD

)−1 (
WT p + γDTDf∗

)
. (10)

The algebraic methods make the use of the system matrix
W, which is determined by the awkward geometrical analysis
of interactions between the ray and pixels. This can be avoid-
ed noticing that: 1) in rectilinear tomography W is identical
to the sensitivity matrix X of the forward model (3):

X =
∂p

∂f
= W (11)

and 2) X does not depend on the reconstructed image (since
the model is linear) but its size, and it can be determined
once and used many times in a given tomograph. Exploiting
the aforementioned properties, matrix X can be easily com-
puted numerically (without geometrical analyses), employing
the forward model p(f) and any image f0 of an appropriate
size:

xj =
p (f0 + ∆f) − p (f0)

∆fj

,

X =
[

x1 x2 . . . xN

]
,

(12)

where ∆f is a vector consisting merely of zeros, except the
j-th element equal to ∆fj , since then, according to (3):

xj =
W (f0 + ∆f) − Wf0

∆fj

=
W · ∆f

∆fj

=
W · [0 ∆fj 0]

T

∆fj

=
wj · ∆fj

∆fj

= wj .

(13)

A numerical implementation of the Radon transform was
utilized to calculate p(f0 + ∆f) and p(f0).

2.3. Automatic selection of the regularization parameter.

Many approaches for the selection of regularisation parame-
ter γ have been proposed for the last decades. In this work,
a recently published method reducing the mean-square error
of reconstruction has been applied [23]. This can be done by
choosing γ that minimises the following functional Vγ :

Vγ (γ) = ε
T (γ)ε (γ) + σ̂

T
(γ)WT Wσ̂ (γ) , (14)

where ε = p−Wf̂ is a residual vector and σ̂ is the standard
deviation of the estimator of f̂ assessed by cross-validation.
This approach enables an automated selection of γ dependent
on the noise level presented in the recorded projections p.

Searching the optimal γ was done iteratively for each im-
age reconstruction case. The procedure began with the calcu-
lation of Vγ for γ0 = 0.01 and then was repeated with 10-
times increased or decreased γ, until the following condition
was fulfilled: Vγ(0.1 · γi) > Vγ(γi) < Vγ(10 · γi). In the end,
the parabola crossing through these three points was found
and the optimal γ∗ at parabola’s minimum was calculated.

2.4. Simulation studies. Numerical simulations were per-
formed in Matlab 7.5.0 (R2007b) with the use of chosen
procedures from the Image Processing Toolbox: modified
Shepp-Logan phantom, Radon transform, filtered backprojec-
tion (FBP) and pseudorandom generator of Gaussian noise.
The aim of these investigations was to determine the influ-
ence of the noise level on the error of image reconstruc-
tion by selected methods: FBP, generalized regularization
(GR), Tikhonov regularization (RTH), Twomey regularization
(RTW) and ridge regression (RR).

During simulations the test image in the form of the
Shepp-Logan phantom [30] was used after its normalization
in the range of [0, 1]. The typical resolution of tomographic
images amounts to 512×512 or 256×256 pixels for on-line
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reconstructions. The latest high-resolution arrays possesses up
to 768×768 and 1024×1024 pixels. Taking into account, how-
ever, the time of repeated Monte Carlo simulations, the phan-
tom resolution was set to 25×25 pixels during calculations
and 50×50 pixels for imaging. Sinograms were determined
using the Radon transform in the angle range of 0–179 de-
grees with the step of 1 degree.

Each resulting sinogram was corrupted by simulated ad-
ditive Gaussian noise. From data presented in [31] it follows
that the level of noise induced by measurement chain in low-
dose tomography does not exceed 6%. Thus, the impact of
noise levels of 0.1–10% was analysed in this study (the noise
level was defined as the ratio of noise standard deviation to
the maximal value in a sinogram).

Firstly, the quality of an image reconstruction by FBP for
different parameters of this procedure was analysed to opti-
mise it for the case under investigation (the image reconstruct-
ed by FBP constituted the reference during the evaluation
of remaining methods). Diverse interpolation methods were
checked: linear, nearest-neighbour, spline and cubic, as well
as the original Ram-Lak filter or the Ram-Lak filter modified
by sine and cosine functions, or Hamming and Hann windows.

To compare the analysed methods, the measure of recon-
struction quality was assumed as the relative reconstruction
error δ:

δ =

∥∥∥f̂ − f

∥∥∥
2

‖f‖2

· 100% =

√
N∑

i=1

(
f̂i − fi

)2

√
N∑

i=1

f2
i

· 100%, (15)

where f denotes the original image (undisturbed phantom)
and f̂ is an image retrieved by a reconstruction method (such
defined measure is equivalent to the Frobenius norm for 2D
images).

The 100 image reconstructions were simulated for each of
investigated methods from the sinograms disturbed by realisa-
tions of noise at succeeding noise levels. Further calculations
were done directly with the resulting images as well as with
images normalised in the range [0, 1]. Finally, the statistical

analysis of reconstruction quality was performed computing
the mean values and standard deviations of the relative error
of reconstruction for each group of 100 results.

3. Results

Among diverse options of the FBP algorithm, the original
Ram-Lak filter appeared the best choice (Fig. 1). Simultane-
ously, the most accurate results were received with the spline
interpolation (Fig. 1a). However, the time of simulations with
spline interpolation was longer than with a slightly less pre-
cise linear interpolation by an order, so the comparative im-
age for succeeding studies was produced using FBP with the
Ram-Lak filter and linear interpolation.

The results of simulations investigating the influence of
noise level on the accuracy of image reconstruction for the
analysed methods is shown in Fig. 2 (without normalization
of the resulting image) and Fig. 3 (with normalisation in the
range of [0, 1]). The quality of reconstruction achieved with
the regularised methods decreases with the increase of a noise
level, however in normalised images this effect is visible only
over the threshold of about 2%, when using FBP (Fig. 3a). In
each case the results are also more scattered at higher noise
levels (Figs. 2b and 3b), reaching larger values (about 1%)
for the regularised methods than for FBP, being however less
dependent on the noise level in the former instance. Simulta-
neously, the scatter is smaller between images not normalised.
In this study all regularised methods appeared more accurate
than FBP for non-normalised images (Fig. 2a), as well as in
the case of normalised images for noise levels lesser than
about 1.5% (Fig. 3a). Among them, the ridge regression (RR)
was slightly better than the others.

In Fig. 4 the phantom image (F) is presented together with
exemplary images reconstructed by FBP (with the Ram-Lak
filter and linear interpolation) and the investigated regularised
methods: GR, RTH, RTW and RR (with the automatically se-
lected regularisation parameter). The images achieved with the
regularised methods are characterised by a larger sharpness
than FBP and, despite smaller values of the relative recon-
struction errors at the noise level of 0.5%, visible distortions
of random character.

a) b)

Fig. 1. Dependence of the relative error of image reconstruction on the noise level and the filter type for the filtered backprojection method
(FBP) with different interpolations: a) spline, b) linear (see text for details and abbreviations)
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a) b)

Fig. 2. Impact of noise level on the mean value (a) and standard deviation (b) of the relative error of reconstruction in relation to methods
used – the case of non-normalised images (see text for abbreviations)

a) b)

Fig. 3. Impact of noise level on the mean value (a) and standard deviation (b) of the relative error of reconstruction in relation to methods
used – the case of normalised images (see text for abbreviations)

Fig. 4. The original phantom image (F) and the exemplary non-normalised images reconstructed with different methods for the noise level
of 0.5%: filtered backprojection (FBP), generalised regularisation (GR), Tikhonov regularisation (RTH), Twomey regularisation (RTW) and

ridge regression (RR)
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4. Discussion

The aim of this study was to analyse the accuracy of CT image
reconstruction by unused in practice algebraic methods, with
a direct inversion of the system matrix and simultaneously in-
cluding basic regularisation mechanisms. The motivation for
this work arose from dynamically growing up computational
possibilities of contemporary computers as well as from the
progress in the regularisation methods development.

The all-important result following from the simulation in-
vestigations is the observation that CT image reconstruction
by regularised algebraic methods is more accurate (in terms
of the relative reconstruction error) than the commonly ap-
plied filtered backprojection method (FBP) within the whole
range of analysed noise levels (0.1–10%) in the case of non-
normalised images and for noise levels up to 1.5% when
normalization is applied. This indicates the potential of the
methods investigated in this study.

The inclusion of penalty term in the minimised function-
al, Eq. (5), for the regularisation of the resulting solution is
not a new approach. In previous works on tomographic image
reconstruction, other authors have used both the Tikhonov [8,
10, 15] or Twomey [19] regularisation. The innovative element
of the approach presented in is paper is the use of regularisa-
tion methods together with the direct matrix inversion instead
of using it in iterative algorithms.

All of the analysed regularisation methods yielded a sim-
ilar quality of CT image reconstructions (Figs. 2 and 4).
A somewhat surprising outcome is the smallest error (thought
the differences are tiny) achieved from ridge regression (RR)
(Figs. 2 and 4), since this method does not take advantage
of prior information neither in the form of a reference image
(as in RTW), nor in the form of local image homogeneity (as
in RTH). In contrary, the generalised regularisation method
(GR), taking into account both of these mechanisms, belongs
to the less accurate methods in this group. The source of this
effect consists in a specific nature of the reconstructed image
as well as in RR itself. In CT images a lot of pixels have small
values, what stems from the presence of background as well
as from low-absorbing character of some tissue (dark areas in
Fig. 4). The penalty term in RR, Eq. (9), has a form that forces
minimisation of pixel values. This particularly enhances the
reconstruction quality of images possessing a large number of
pixels with small values, as in the phantom used. Analysing
the ridge regression one can find that it is equivalent to RTW
with the reference image consisting only of zero-valued pixels
(f∗ = 0), and to RTH insensitive to the differences between
adjacent pixels (D = I). Simultaneously, the regularisation
matrix D used in RTH imposed the minimisation of differ-
ences between horizontal and vertical pixels only (as in [10]),
however in future studies it can be extended to include also the
diagonal neighbours [8, 16], that may improve the quality of
RTH reconstruction. Taking into account the results achieved
for RR and the character of CT images (smooth areas with

occasional discontinuities), it is worth also to pay attention to
methods smoothing areas with a locally uniform absorption
level (representing given tissue), as the total variance method
(TV) which takes into account a zero gradient in such regions
[11, 12]. Similarly, for the physical reasons, the inclusion of
pixel non-negativity constraint should be also considered [8,
10–12, 32].

Distortions present in the reconstructed image may urge to
its normalisation (the range [0, 1] was used in this study) be-
fore the stage of imaging in a greyscale. The data from Fig. 3
suggest that in such a case, for noise exceeding 1.5%, the
FBP method will be more precise than the regularised alge-
braic methods. This effect is, however, deceptive. Analysing
the section of the phantom and the exemplary reconstruct-
ed images shown in Fig. 5, it is apparent that normalisation,
especially for a higher noise level in the data (bottom pan-
el), reduces the dynamics of reconstructed image, primarily
increasing the systematic component of the error (the dif-
ference between the reconstructed image and the phantom).
Since images reconstructed by RR are less smoothed than the
ones yielded by FBP, their dynamics is more suppressed by
normalisation, thus the systematic error is increased. This ex-
plains the difference between Fig. 2a and Fig. 3a. Additionally,
the value of normalising coefficient depends on the difference
between the maximal and minimal pixels in the image, which
values are random due to the stochastic character of noise.
This explains why the scatter of normalised images at a given
noise level is bigger than of non-normalised ones (compare
Figs. 2b and 3b).

The major disadvantage of algebraic methods is a long
computational time (in simulations performed it was longer
from FPB by more than 3 orders) as well as hardware limita-
tions (mainly the size of addressable RAM). In particular, the
regularised methods involve a long time of matrix inversion,
Eqs. (7–10), as well as of searching the optimal value of regu-
larisation parameter γ, Eq. (14). Because both the procedures
have a crucial impact on reconstruction quality, further work
with the aim to shorten the time of computations is needed.
The possibility of embedding increasingly bigger RAMs in
contemporary computers and operating systems, as well as
of organising parallel computations on multicore GPUs [15],
may appear helpful to this end.

Another problem is that the random distortions apparent
in images reconstructed by regularised algebraic methods can
be a bigger diagnostic obstacle than the blurring of edges
in FBP, since such disturbances falsely suggest tissue hetero-
geneity. They can be reduced by increasing the value of γ,
however then (as in FBP) the image becomes more fuzzy
[23, 24] (Figs. 4 and 5). Meanwhile, the less sharp edges
obstruct the accurate localisation of borders between healthy
and diseased tissue. Facilitating the operator with the possi-
bility of user-adjustment of γ seems to be an accommodating
solution for this problem.
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Fig. 5. Central horizontal sections of the phantom (F) and the examples of images reconstructed by filtered backprojection (FBP) and
ridge regression (RR) for the noise level of 0.5% (top panel) and 5% (bottom panel) without normalisation (left panel) and with image

normalisation (right panel)

5. Conclusion

The analysed regularised algebraic methods for CT image re-
construction lead to uncomplicated, one-step computational
algorithms. In the paper it has been shown that the invariant
system matrix (playing an important role in the algorithms)
can be easily determined in the case of hard-field tomography
by twofold solution of the forward problem. The performed
simulations demonstrated also, in spite of time-consuming
calculations and a certain level of random distortions in re-
trieved images, that the regularised algebraic methods are
more accurate than the commonly used filtered backprojec-
tion one.

The ridge regression method appeared the most precise
among the tested regularised algorism, yielding slightly small-
er reconstruction errors than the other algebraic approach-
es. This result followed mainly from the properties of the
Shepp-Logan phantom used in investigations. Simultaneously
this outcome indicated the significant features of tomographic
images, qualifying the type and way of application of prior
knowledge to regularise the image reconstruction, as e.g. rel-
atively large and coherent areas with similar absorption (rep-
resenting given tissue).

The performed preliminary study pointed at the regu-
larised algebraic method, being effective in terms of CT im-
age reconstruction quality. It also entitles to define potential
directions of further research that should cover: refining the
algorithms in terms of computational effectiveness, modifica-
tion of regularisation mechanism to include the low-level of
image background and presence of coherent homogeneous ar-
eas, as well as utilising the fact that the character of noise in
a given tomograph can be assessed experimentally and then
used to select the optimal value of regularisation parameter.

The achieved results clearly indicate that the analysed
methods can play a significant role in improving the quali-
ty of CT imaging.
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