Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We report an investigation of the exposure of the human eye to wind. The study was carried out at wind speeds of 40, 80, and 160 km/h. The pressure and forces acting on the eye were examined using the ANSYS CFX software package. The results highlight the necessity of using glasses, contact lens, or protective equipment when, for example, riding a motorcycle, skiing, parachuting, and paragliding.
Wydawca
Czasopismo
Rocznik
Tom
Strony
130--137
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, University of Dicle, Diyarbakir, Turkey
Bibliografia
- [1] Abouali O, Modareszadeha A, Ghaffariyehb A, Tuc J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys 2012;34:681–92.
- [2] Crowder TR, Ervin VJ. Numerical simulations of fluid pressure in the human eye. Appl Math Comput 2013;219:11119–33.
- [3] Ferreira JA, de Oliveira P, da Silva PM, Murta JN. Numerical simulation of aqueous humor flow: from healthy to pathologic situations. Appl Math Comput 2014;226:777–92.
- [4] Wessapan T, Rattanadecho P. Influence of ambient temperature on heat transfer in the human eye during exposure to electromagnetic fields at 900 MHz. Int J Heat Mass Transf 2014;70:378–88.
- [5] Villamarin A, Roy S, Hasballa R, Vardoulis O, Reymond P, Stergiopulos N. 3D simulation of the aqueous flow in the human eye. Med Eng Phys 2012;34:1462–70.
- [6] Ooi EH, Ang WT, Ng EYK. Bioheat transfer in the human eye: a boundary element approach. Eng Anal Bound Elem 2007;31:494–500.
- [7] Báez E, Nicolás A. From cat's eyes to multiple disjoint natural convection flow in tall tilted cavities: A direct primitive variables approach. Phys Lett A 2013;377:2270–4.
- [8] Farivar F, Shoorehdeli MA, Teshnehlab M. An interdisciplinary over view and intelligent control of human prosthetic eye movements system for the emotional support by a huggable pet-type robot from a biomechatronical viewpoint. J Frankl Inst 2012;349:2243–67.
- [9] Zhao Y, Sun H. Centroid position deviation of distorted cat-eye effect reflected beam. Optik 2013;124:6834–9.
- [10] Zhao YZ, Sun HY, Song FH, Dai DD. Propagation properties of Gaussian beams passing through cat eye optical lens with center shelter. Optik 2010;121:2198–201.
- [11] Zhao YZ, Sun HY, Zhang LX, Zheng YH. Light intensity at the return place and encirclement power ratio for the distorted reflected beam based on cat-eye effect. Optoelectron Lett 2011;7:476–9.
- [12] Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci 2014;108:203–12.
- [13] Pascolo P, Carniel R, Grimaz S. Dynamical models of the human eye and strabismus. Chaos Solitons Fractals 2009;41:2463–70.
- [14] Gasmelseed A, Yunus J. The effects of metamaterial on electromagnetic fields absorption characteristics of human eye tissues. Prog Biophys Mol Biol 2013;1–5.
- [15] Ooi EH, Ng EY. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med 2008;38:252–62.
- [16] Modarreszadeh A, Abouali O. Numerical simulation for unsteady motions of the human vitreous humor as a viscoelastic substance in linear and non-linear regimes. J Non-Newton Fluid Mech 2014;204:22–31.
- [17] Huber S, Moeller K, Nuerk HC. Adaptive processing of fractions – evidence from eye-tracking. Acta Psychol (Amst) 2014;148:37–48.
- [18] Józwik A, Siedlecki D, Zajac M. Verification of numerical algorithm for crystalline lens location in the eyeball basing on Purkinje images. Optik 2013;124:1581–4.
- [19] Narasimhan A, Jha KK, Gopal L. Transient simulations of heat transfer in human eye undergoing laser surgery. Int J Heat Mass Transf 2010;53:482–90.
- [20] Khan MA. Numerical study on human cornea and modified multiparametric correction equation for Goldmann applanation tonometers. J Mech Behav Biomed Mater 2014;30:91–102.
- [21] ANSYS 11.0 (Academic Teaching Introductory) Command References and Gui.
- [22] Crowder TR, Ervin VJ. Appl Math Comput 2013;219: 11119–33.
- [23] H. Kolb, Gross anatomy of the eye. http://webvision.med.utah.edu/book/part-i-foundations/ gross-anatomy-of-the-ey/.
- [24] Gross H, editor. Handbook of Optical Systems: Vol. 4 Survey of Optical Instruments. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2008. ISBN: 978-3-527-40380-6.
- [25] Lagendijk JW. A mathematical model to calculate temperature distribution in human and rabbit eye during hyperthermic treatment. Phys Med Biol 1982;27:1301–11.
- [26] Shafahi M, Vafai K. Human eye response to thermal disturbances. ASME J Heat Transf 2011;133:011009.
- [27] Norris E, Myers L. Determinants of personal protective equipment (PPE) use in UK motorcyclists: exploratory research applying an extended theory of planned behavior. Accid Anal Prev 2013;60:219–30.
- [28] Timothy F, Gladys OP, Rebecca LT, Philip E, Keith W. A review of facial protective equipment use in sport and the impact on injury incidence. Br J Oral Maxillofac Surg 2012;50:233–8.
- [29] Coia JE, Ritchie L, Adisesh A, Makison Booth C, Bradley C, Bunyan D, et al. Guidance on the use of respiratory and facial protection equipment. J Hosp Infect 2013;85:170–82.
- [30] Kathryn N, Allison M, Philip B, O'Brien-Pallas L, Scott J, Holness DL. Behind the mask: determinants of nurse's adherence to facial protective equipment. Am J Infect Control 2013;41:8–13.
- [31] Son S-Y, Bakri I, Satoshi M, Tochihara Y. Comparison of firefighters and non-firefighters and the test methods used regarding the effects of personal protective equipment on individual mobility. Appl Ergon 2014;45:1019–27.
- [32] Camille KW, Heather C. Development and validation of tools for assessing use of personal protective equipment in health care. Am J Infect Control 2013;41:28–32.
- [33] David AL, Santosh KV, Melanye JB, Melissa JP. Factors influencing worker use of personal protective eyewear. Accid Anal Prev 2009;41:755–62.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c39e621a-9aca-43be-aac7-0a0b3fa541ec