PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coal mine underground positioning algorithm based on RSSI model correction and node cooperation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To address the issues of environmental complexity and low positioning accuracy faced by coal mine underground positioning systems, an improved localisation algorithm based on Received Signal Strength Indication (RSSI) model correction and node collaboration, namely, the RSSI-MCNC (RSSI Model Correction and Node Collaboration) algorithm, is proposed. First, this algorithm employs Kalman filter technology to optimise the collected RSSI values, improving signal stability and range model accuracy. Second, more precise ranging results are achieved by dynamically adjusting the RSSI model parameters to adapt to changes in mining environments. In the localisation stage, the localised unknown nodes are used as cooperative nodes to position other unknown nodes and solve the objective function through the improved weighted centroid algorithm and gradient descent method, precisely locating the unknown nodes. The simulation results indicate that the RSSI-MCNC algorithm can significantly improve the positioning coverage and accuracy of fixed anchor nodes and the random distribution of unknown nodes in mine roadways, especially in the case of limited anchor nodes. This is significant for improving the safety of mine personnel and equipment.
Rocznik
Strony
45--62
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Chaohu University, School of Electronic Engineering, Chaohu, Anhui, 238000, China
autor
  • Huishang Futures Co. Lt d., Hefei, Anhui, 230061, China
autor
  • Chaohu University, School of Electronic Engineering, Chaohu, Anhui, 238000, China
autor
  • Chaohu University, School of Electronic Engineering, Chaohu, Anhui, 238000, China
autor
  • Chaohu University, School of Electronic Engineering, Chaohu, Anhui, 238000, China
Bibliografia
  • [1] Y .F. Ni, Z.G. Wang, J. Wang, P. Guo, Improvement of Underground Personnel Location Algorithm Based on RSSI.Radio Engineering 53 (03), 663-668 (2023).
  • [2] J. Geng, X. Yu, C. Wu, G. Zhang, Research on pedestrian in-door positioning based on two-step robust adaptive cubature kalman filter with smartphone MEMS sensors. Micromachines 14 (6), 1252 (2023).DOI : https://doi.org/10.3390/mi14061252.
  • [3] M. Zare, R. Battulwar, J. Seamons, J. Sattarvand, Applications of wireless indoor positioning systems and technologies in underground mining: A review. Mining, Metallurgy & Exploration 38, 2307-2322 (2021).DOI : https://doi.org/10.1007/s42461-021-00476-x.
  • [4] X. Qiao, H. S. Yang, Z. C. Wang, Iterative L-M algorithm in WSN-Utilizing modifying average hopping distances. International Journal of Online Engineering 10 (13), 4-20 (2017). DOI: https://doi.org/10.3991/ijoe.v13i10.7006.
  • [5] X. Qiao, F. Chang, Underground location algorithm based on random forest and environmental factor compensation.International Journal of Coal Science & Technology 8 (5), 1108-1117 (2021).DOI : https://doi.org/10.1007/s40789-021-00418-4.
  • [6] A. Booranawong, N. Jindapetch, H. Saito, Adaptive filtering methods for RSSI signals in a device-free humandetection and tracking system. IEEE Systems Journal 13 (3), 2998-3009 (2019).DOI : https://doi.org/10.1109/jsyst.2019.2919642.
  • [7] S. Kumar, S. Kumar, N. Batra, Optimized Distance Range Free Localization Algorithm for WSN. Wireless Personal Communications 117, 1879-1907 (2021). DOI: https://doi.org/10.1007/s11277-020-07950-7.
  • [8] P. Zuo, H. Zhang, C. Wang, H. Jiang, B. Pan, Directional target localization in NLO S environments using RSS-TOA combined measurements. IEEE Wireless Communications Letters 10 (11), 2602-2606 (2021).DOI : https://doi.org/10.1109/LWC.2021.3109787.
  • [9] Y . Zhu, B. Deng, A. Jiang, X. Liu, Y. Tang, X. Yao, ADMM-based TDOA estimation. IEEE Communications Letters 22 (7), 1406-1409 (2018). DOI: https://doi.org/10.1109/LCOMM.2018.2833546.
  • [10] K.Q. Ren, C.M. Pan, Collaborative localization algorithm based on dynamic correction of RSSI model parameters. Journal of Huazhong University of Science and Technology (Natural Science Edition) 48 (02), 97-102 (2020).DOI: https://doi.org/10.13245/j.hust.200217.
  • [11] V . Bianchi, P. Ciampolini, I. De Munari, RSSI basedindoor localization and identification for ZigBee wirelesssensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement 68 (2), 566-575 (2019).DOI: https://doi.org/10.1109/TIM.2018.2851675.
  • [12] N . Zhang, Mine weighted centroid positioning algorithm based on improved Gaussian mixture filter. Journal of Mine Automation 45 (11), 24-30 (2019). DOI: https://doi.org/10.13272/j.issn.1671-251x.17420.
  • [13] L . Gao, Y.J. Hu, L. Zhang, T. Zhao, Wireless accurate location algorithm based on node cooperation in underground coal mine. Journal of Mine Automation 44 (08), 39-45 (2018).DOI : https://doi.org/10.13272/j.issn.1671-251x.2018030086.
  • [14] T. Zhao, X.S. Li, L. Zhang, E.J. Ding, Y.J. Hu, Algorithm for cooperational localization of the sectional intervaland LOS node in a coal mine. Journal of Xidian University 46 (01), 166-173 (2019).DOI : https://doi.org/10.19665/j.issn1001-2400.2019.01.026.
  • [15] J.M. Li, J.H. Zhang, X.H. Wang, S.P. Wang, M. Zhao, X.Z. Chen, Downhole TDOA positioning method with improved whale optimization algorithm and Taylor series. Experimental Technology and Management 39 (12),30-36+54 (2022). DOI: https://doi.org/10.16791/j.cnki.sjg.2022.12.005.
  • [16] R. Jin, Z. Che, H. Xu, Z. Wang, L. Wang, An RSSI-based localization algorithm for outliers suppression in wirelesssens or networks. Wireless Networks 21 (8), 2561-2569 (2015). DOI: https://doi.org/10.1007/s11276-015-0936-x.
  • [17] X. Qiao, J. Wang, H. Shen, F. Chang, An Improved Received Signal Strength Indication Location Algorithm Based on Gaussian Filter and Quasi-Newton Method. International Journal of Network Security 26 (3), 501-509 (2024).DOI: https://doi.org/10.6633/IJNS.202405_26(3).17.
  • [18] C. Gao, J. Yan, X. Yang, X. Luo, X. Guan, An attack-resistant target localization in underwater based on consensusfusion. Computer Communications 218, 131-147 (2024). DOI: https://doi.org/10.1016/j.comcom.2024.02.011.
  • [19] Z. Piao, J. Wang, L. Tang, B. Zhao, W. Wang, AccLoc: Anchor-Free and two-stage detector for accurate object localization. Pattern Recognition 126, 108523 (2022). DOI: https://doi.org/10.1016/j.patcog.2022.108523.
  • [20] R. Jiang, Y. Yu, Y.Y. Xu, X.M. Wang, D.P. Li, Improved Kalman filter indoor positioning algorithm based on CHAN. Journal on Communications 44 (02), 136-147 (2023). DOI: https://doi.org/10.11959/j.issn.1000-436x.2023006.
  • [21] L . Sun, B. Li, D. Gao, B. Fan, Adaptive multi-object tracking algorithm based on split trajectory. The Journal of Supercomputing 80 (15), 22287-22314 (2024). DOI: https://doi.org/10.1007/s11227-024-06285-5.
  • [22] X. W. Yu, L. P. Huang, Y. Liu, H. Yu, Y. Li, Convex Localization Algorithm based on Time Difference of Arrivalfor WSN in Uranium Tailings Radioactive Contamination. Wireless Personal Communications 118 (2), 999-1015(2021). DOI: https://doi.org/10.1007/s11277-020-08055-x.
  • [23] Q.Y. Li, W. Li, W. Sun, J.P. Wang, J. Li, Wi-Fi indoor localization algorithm based on RSSI and assistant nodescol laboration. Journal of Electronic Measurement and Instrumentation 30 (05), 794-802 (2016).DOI : https://doi.org/10.13382/j.jemi.2016.05.017.
  • [24] D . Yan, C. Shi, T. Li, An improved PDR system with accurate heading and step length estimation using handheld smartphone. The Journal of Navigation 75 (1), 141-159 (2022). DOI: https://doi.org/10.1017/S0373463321000631.
  • [25] C. Jiang, Y. Chen, C. Chen, J. Jia, H. Sun, T. Wang, J. Hyyppä, Smartphone PDR/GNSS integration via factorgraph optimization for pedestrian navigation. IEEE Transactions on Instrumentation and Measurement 71, 1-12(2022). DOI: https://doi.org/10.1109/TIM.2022.3186082.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c39cab08-39fb-4f4c-b6c0-9c6b3708de53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.