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Abstract 

In the paper the influence of machining accuracy of mechanism links on their dynamic response is under 
investigation. As an example a of planar slider-crank mechanism is studied. The influence of different cross-

section area within the assumed tolerance on the dynamic behaviour of mechanism’s connection rod is 
investigated. For vibration analysis of links the finite element method is used with Bernoulli-Euler beam 

elements. The calculation were conducted for nominal dimensions of the cross section of the crank and for the 

two cases for connecting rod: 1) for the maximal stiffness and 2) for the minimal stiffness obtained within the 
given tolerance. The results of analysis show that the changes in dynamic response for different cross-sectional 

area of mechanism links, within the assumed tolerance of machining, can be quite significant in the case of 

high-speed precise mechanisms and manipulators. 
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1. Introduction 

The influence of machining accuracy of mechanism links on their dynamic response is 

rarely a subject of research activities however its importance is very clear. The computer 

simulations conducted in the case of gear shafts [3] have shown that machining tolerance 

of pins affected the work gearing. It appeared that in the case of toothed gears much larger 

significance has the preciseness of machining of shaft pins than taking into account other 

factors such as non-linear phenomena.  

In the last years the demand for modelling high-speed, lightweight mechanisms was 

emphasized. On the other hand these new constructions are more flexible and the accuracy 

of machining of mechanism links can be significant and its influence on dynamic response 

should be investigated. 

The research works on the modelling and analysis of planar mechanisms can be 

divided in two categories: the first group of researchers take into account the flexibility of 

links; the second group of works assume that the links of mechanism are rigid, but 

considering other factors such as friction and clearances in joints, dynamics of engine and 

transmission system, etc. The most popular and efficient method for analysing dynamic 

behaviour of manipulators with taking into account flexibility of links is the finite element 

method. In the present paper the FEM is applied to dynamic analysis of a slider-crank 

mechanism. It is assumed that the mechanism links are cylindrical tubes (i.e. with ring-

shape cross-section) and the influence of machining tolerances on the dynamic response 

is under investigation. 
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2. Modelling of flexible elements by FEM 

The finite element method is commonly used for vibration analysis of flexible mechanisms 

since it allows taking into account flexibility of all links. In recent years considerable 

attention has been given to the analysis of flexible mechanisms. The need of considering 

flexibility of members in high-speed mechanisms has arisen due to restrictions on 

weight and power requirements. A number of investigators have conducted analyses of 

flexible mechanisms applying special purpose finite element method. In most of these 

studies, the response of a mechanism was obtained through the superposition of rigid-body 

and flexible motion components [4, 5]. In these papers it was assumed that the rigid-body 

motion is known and the elastic displacements are separated from the rigid-body 

displacement and solved as the unknowns of the system.  

Equations of motion are usually derived by using the Lagrangian formulation. In the 

derivation of this matrix equation the planar linear beam finite elements are used.  

For modelling the slider-crank mechanism with taking into account flexibility of links 

the beam finite elements are used (Fig. 1). 
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Figure 1. Displacement of nodes of a beam finite element 

The beam element consists of 2 nodes and three general displacements at each node, 

so components of nodal displacements vector in global xy and local  coordinate frames 

are as follows: 

{𝑠}𝑇 = [𝑢1, 𝑤1, 𝛩1, 𝑢2, 𝑤2, 𝛩2],    (1) 

where:  𝑢1, 𝑤1, 𝑢2, 𝑤2 are displacements of nodes 1 and 2 in x and y direction, respectively; 

𝛩1, 𝛩2  are angular deformations of nodes 1 and 2, 

{𝛿}𝑇 = [𝑝1 , 𝑣1, 𝛩1, 𝑝2, 𝑣2, 𝛩2],    (2) 

where p1, p2, v1, v2 – displacements of nodes 1 and 2 in  and  direction, respectively. 

The vector {} is transformed into {s} by 

 {𝛿} = [𝑇]{𝑠},     (3) 

where [T] is a transformation matrix  

[𝑇] =

[
 
 
 
 
 

cos 𝛼 sin 𝛼 0 0 0 0
− sin 𝛼 cos 𝛼 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 𝛼 sin 𝛼 0
0 0 0 − sin 𝛼 cos 𝛼 0
0 0 0 0 0 1]

 
 
 
 
 

,   (4) 

where  is the angle between local and global coordinate systems. 
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The shape function [Ne] for elastic displacement of Euler-Bernoulli beam type finite 

element is as follows 

[𝑁𝑒] = [
1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿(𝜉 − 2𝜉2 + 𝜉3) 0 3𝜉2 − 2𝜉3 𝐿(𝜉3 − 𝜉2)
] ,  (5) 

where 0  𝜉  1. 

In the derivation procedure it is assumed that the shape function for rigid-body motion 

is the same as for the elastic motion [7]. As a result, the system inertia matrix for elastic 

displacement vector appears together with the rigid-body acceleration vector on the right 

hand side of equations of motions: 
[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = {𝐹} − [𝑀]{𝑥̈0},  (6) 

where [M] is the global inertia matrix, [C] is the global damping matrix, [K] is the stiffness 

matrix, {F} represents generalized forces, and {𝑥̈}, {𝑥̇} and {𝑥} represent acceleration, 

velocity and displacement vectors (in nodal points), and {𝑥̈0} is the rigid-body 

acceleration. 

In the above equation two elements are unknown and should be defined: the 

formulation of a damping matrix and rigid-body acceleration. 

In the analysis of flexible mechanisms the classical Rayleigh damping is usually 

adopted. In these studies the damping, stiffness and inertia matrices are based on the same 

displacement vectors connected with elastic deformation. In the Rayleigh damping model 

there are two factors: α – for mass proportional damping and β – for stiffness proportional 

damping. It is assumed that mass proportional damping dominates when the frequency is 

low and stiffness proportional damping dominates when the frequency is high. In most 

cases of multibody dynamics the stiffness proportional damping is only considered: 

[𝐶] = 𝛽[𝐾].     (7) 

The coefficient β is determined based on the first few natural frequencies of the system. 

The procedure of obtaining damping matrix in finite element analysis of flexible 

mechanism is discussed in details in [4]. 

The way of obtaining rigid-body acceleration is presented in the Author's paper [5]. 

The model of a shape function for the planar rigid-body motion is proposed and the shape 

function for elastic motion is not used to describe an arbitrary large rigid-body translation. 

The use of different shape functions for elastic and rigid motions implies that the inertia 

matrix, standing by rigid body acceleration vector in the equations of motion of flexible 

mechanisms, depends on both shape functions of elastic and rigid elements.  

The components of nodal displacement vector can be expressed in the relative 

coordinate system xy by the following vector: 

{𝑠0}
𝑇 = [𝑢01, 𝑤01, 𝑢02, 𝑤02]    (8) 

or in the local coordinate system ξη by 

{𝛿0}
𝑇 = [𝑝01, 𝑣01, 𝑝02, 𝑣02],    (9) 

where 𝑢01, 𝑤02, 𝑢01, 𝑤02 are displacements of nodes 1 and 2 in  x and y direction 

respectively,  𝑝01, 𝑝02, 𝑣01, 𝑣02 - displacements of nodes 1 and 2 in  ξ and  η direction 

respectively. 
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A transformation matrix [T0] for this case is as follows ( is the angle between  and 

global coordinate systems): 

 [𝑇0] = [

cos 𝛼 sin α 0 0
− sin 𝛼 cos 𝛼 0 0

0 0 cos 𝛼 sin 𝛼
0 0 − sin 𝛼 cos α

].     (9) 

The shape function for the rigid body motion [Ne0] can be expressed as: 

[𝑁𝑒0] = [
0.5 0 0.5 0
0 1 − 𝜉 𝐿⁄ 0 𝜉 𝐿⁄

],  (10) 

where 0    L, L is the length of a finite element 

The obtained equations of motion for the system are as follows [7] 
[𝑀0]{𝑥̈0} + [𝐾0]{𝑥0} = {𝐹0},   (11) 

where [M0], [K0] are the system matrices obtained from element matrices; {x0} is the 

nodal displacement vector, and {F0} is the external system force vector. The presence of 

stiffness matrix in equations (11) is only necessary due to proper modeling of 

displacements of the rigid element and has practically no influence on rigid body motion 

(the kinetic energy of an element and consequently element inertia matrix were taken for 

rigid elements). If the stiffness matrix was omitted, the nodes could displace in any 

direction – also in longitudinal direction of the element which is impossible due to the 

rigidity of elements.  

3. Numerical example 

The influence of accuracy of link machining on vibration mechanism members was 

investigated for the example of a planar slider-crank mechanism presented in Fig. 2. The 

dynamic analysis of this type of mechanisms is studied by many researchers, e.g. Akbari 

et al. [1] investigated effects of various mechanisms’ parameters including crank length, 

flexibility of the connecting rod and the slider's mass on its dynamic behaviour. Cheng 

and Liu [2] studied the influence of the crack in the rod on a slider-crank dynamics. 

 

Figure 2. Slider crank mechanism 

It was assumed that the crank was manufactured with no machining errors (i.e. it 

possess nominal dimensions) but the connecting rod is made of tube shape with the 

nominal cross-sectional dimensions: the inner diameter of 10 mm, the outer diameter of 

16 mm. Assuming the IT12 class of tolerance for the inside diameters and IT11 for the 
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outside diameters and applying  the possible wall thickness of the tube shape connecting 

rod are as follows: maximal thickness is equal to (16-10)/2=3 [mm], and minimal 

thickness (15.89-10.15)/2=2.87 [mm]. Its characteristics are given in Table 1. At point 4 

there is attached mass m = 0.2 kg and gravity and friction in rotary pairs and slider are not 

taken into account. 

The coefficient β appearing in the damping matrix formulation (7), based on the natural 

frequencies of the system, was assumed to be β = 9.03·10-.7. 

Table 1. Slider-crank parameters 

Parameter Crank 
Connecting Rod 

Minimal value Maximal value 

Length, m 0.1 0.4 

Cross-section area, m2 1.107×10-3 1.169×10-4 1.225×10-4 

Moment of inertia, m4 1.775×10-7 2.584×10-9 2.726×10-9 

Young modulus, N/m2 0.71×1011 

Density, kg/m3 2710 

 

The mechanism is divided into three elements, i.e. crank is represented by one beam finite 

element while the connecting rod by two finite elements. Taking into account the elastic 

vibration of links the vector of the unknown functions (nodal displacement vector {x}) in 

global coordinates consists of 9 elements: displacements u, and w in the X, and Y direction, 

respectively, of moving nodes 2, 3, and 4, and nodal deformation angles  

 {𝑥}𝑇 = [𝑢2, 𝑤2, 𝛩21, 𝛩22, 𝑢3, 𝑤3, 𝛩3, 𝑢4, 𝛩4].   (12) 

The input torque Mt is applied to the crank of the  mechanism and is assumed to be 

 𝑀𝑡 = 𝑀𝑡0 + 𝑀𝑡1 sin ,    (13) 

where  is the crank angle. 

The data for input torque are as follows: Mt0 = 0.1 Nm, Mt1 =0.1 Nm. The zero initial 

conditions for crank angle and crank rotational speed are assumed. 

The governing equations of motion for dynamic analysis of flexible mechanisms are 

presented in Chapter 2. In numerical analysis midspan displacements of the connecting 

rod (node 3) were calculated and the results are presented in Fig. 3. It can be seen that it 

is visible difference in dynamic response for the two cases considered i.e. one – for the 

maximum stiffness of the connecting rod within the given machining tolerance, and 

second – minimum stiffness within the tolerance of the cross-section of the connecting 

rod. From the figure it can be seen that for the lowest link stiffness the amplitude of 

vibration is greater. 
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Figure 3. Midspan displacements of connecting rod (node 3). 

4. Conclusions 

The conducted comparative analysis shows that within tolerance of links the difference in 

stiffness can be significant. The subject is not sufficiently studied in literature since for 

the case of high-speed lightweight mechanisms or manipulators the changes in dynamic 

response may cause additional errors. In the case of rotatable elements (e.g. shafts) the not 

perfectly axial cross-sectional area (but machining within the given tolerance) causes 

additional vibrations and influences the working conditions of gears. The conducted 

transient analysis shows that starting torque has a great influence on the vibration.  

The model presented in the paper did not take into account the phenomena that always 

occur in this type of mechanisms such as clearances and friction in rotary and sliding pairs. 

The future investigation should be directed at building an extensive model in order to 

describe possible effect of flexible links on mechanism behaviour including jamming, 

blocking and rattling. 
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