Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we establish the Hyers-Ulam orthogonal stability of the mixed type additive-cubic functional equation in multi-Banach spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
106--111
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur - 635 601, TamilNadu, India
autor
- Departamento de Ciencias Exatas e Engenharia, Academia Militar, 2720-113 Amadora, Portugal
autor
- PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur - 635 601, TamilNadu, India
Bibliografia
- [1] Ulam S. M., A collection of the mathematical problems, Interscience, New York, 1960
- [2] Hyers D. H , On the stability of the linear functional equation, Proc. Natl. Acad. Sci., USA, 1941, 27, 222-224
- [3] Rassias T. M., On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 1978, 72, 297-300
- [4] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 1950, 2, 64-66
- [5] Brzdęk J., Popa D., Rasa I., Xu B., Ulam Stability of Operators, Mathematical Analysis and its Applications, Academic Press, Elsevier, 2018
- [6] Czerwik S., Functional equations and inequalities in several variables, World Scientific Publishing Co., Singapore, New Jersey, London, 2002
- [7] Hyers D. H., Isac G., Rassias T. M., Stability of functional equations in several variables, Birkhäuser, Basel, 1998
- [8] Jun K., Kim H., The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 2002, 274, 867-878
- [9] Wang L., Liu B., Bai R., Stability of a mixed type functional equation on multi-Banach spaces: A fixed point approach, Fixed Point Theory Appl., 2010, 2010: 283827
- [10] Lee S., Im S., Hwang I., Quartic functional equations, J. Math. Anal. Appl., 2005, 307, 387-394
- [11] Xu T. Z., Rassias J. M., Xu W. X., Generalized Ulam-Hyers stability of a general mixed AQCQ functional equation in multi-Banach spaces: A fixed point approach, European Journal of Pure and Applied Mathematics, 2010, 3, 1032-1047
- [12] Wang Z., Li X., Rassias T. M., Stability of an additive-cubic-quartic functional equation in multi-Banach spaces, Abstract and Applied Analysis, 2011
- [13] Moradlou F., Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces: A fixed point approach, Commun. Korean Math. Soc., 2013, 28, 319-333
- [14] Wang X., Chang L., Liu G., Orthogonal stability of mixed additive-quadratic Jenson type functional equation in multi-Banach spaces, Advances in Pure Mathematics, 2015, 5, 325-332
- [15] Brzdęk J., Fechner W., Moslehian M. S., Sikorska J., Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 2015, 9(3), 278-326
- [16] Alizadeh S., Moradlou F., Approximate a quadratic mapping in multi-Banach spaces, A fixed point approach, Int. J. Nonlinear Anal. Appl., 2016, 7, 63-75
- [17] Ostadbashi S., Kazemzadeh J., Orthogonal stability of mixed type additive and cubic functional equation, Int. J. Nonlinear. Anal. Appl., 2015, 6(1), 35-43
- [18] Dales H. G., Moslehian M. S., Stability of mappings on multi-normed spaces, Glasgow Mathematical Journal, 2007, 49, 321-332
- [19] Ratz J., On orthogonally additive mappings, Aequationes Mathematicae, 1985, 28, 35-49
- [20] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4, 91-96
- [21] Mihet D., Radu V., On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 2008, 343, 567-572
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c39618ac-5afa-4636-89cd-8655c1727215