Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a modified algorithm for determining the positioning accuracy of a UAV based on a joint GPS/EGNOS+GPS/SDCM (Global Positioning System/European Geostationary Navigation Overlay Service+Global Positioning System/ System for Differential Corrections and Monitoring) solution. Firstly, the average weighted model for determining the position of the UAV (Unmanned Aerial Vehicle) was developed. The algorithm takes into account the coordinates from the individual GPS/EGNOS and GPS/SDCM solution as well as correction coefficients that are a function of the inverse of the ionospheric VTEC (Vertical TEC) delay. Next the accuracy term was estimated in the form of the position errors and RMS (Root Mean Square) errors. Finally the Kalman filter algorithm was used for improved the position errors and RMS errors. The developed algorithm is concerned with determining the positioning accuracy of the UAV for BLh (B-Latitude, L-Longitude, h-ellipsoidal height) ellipsoidal coordinates. The algorithm was tested on kinematic GPS/SBAS (Global Positioning System/Satellite Based Augmentation System) data recorded by a GNSS (Global Navigation Satellite System) receiver placed on a DJI Matrice 300RTK type unmanned platform. As part of the research test, two flights of the UAV were performed on 16 March 2022 in Olsztyn. In the first flight, the proposed algorithm enabled an increase in UAV positioning accuracy from 4% to 57% after Kalman filter process. In the second flight, on the other hand, UAV positioning accuracy was increased from 6% to 42%. The developed algorithm enabled an increase in UAV positioning accuracy and was successfully tested in two independent flight experiments. Ultimately, further research is planned to modify the algorithm with other correction coefficients.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
284--300
Opis fizyczny
Bibliogr. 56 poz., fig., tab.
Twórcy
autor
- Institute of Navigation, Polish Air Force University, ul. Dywizjonu 303 nr 35, 08-521 Dęblin, Poland
autor
- Institute of Navigation, Polish Air Force University, ul. Dywizjonu 303 nr 35, 08-521 Dęblin, Poland
autor
- Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 nr 35, 08-521 Dęblin, Poland
autor
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 2, 10-720 Olsztyn, Poland
autor
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 2, 10-720 Olsztyn, Poland
autor
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- 1. Kustra M. Unmanned aerial systems - mobile monitoring in the state security system. In: Modern Navigation, vol. II, Dęblin, 2020, 305–313. (in Polish)
- 2. Wyszywacz W. The risk of threats management in the use of unmanned aerial vehicles, PhD Thesis, Poznan University of Technology, 2020, 1–151. (in Polish)
- 3. Fellner A. Precise pre-positioning and direct navigation preparation in RPAS operational work, In: Unmanned aircraft systems in firefighting and rescue - from product to rescuer, Jozefów, 2022, 65–85.
- 4. Zawistowski M., Fellner R. Important parameters and settings in unmanned aerial vehicles (UAV) in operational work of the fire brigade. Safety & Fire Technology. 2021, 58(2), 92–118, https://doi.org/10.12845/sft.58.2.2021.6
- 5. Lalak M., Wierzbicki D., Kędzierski M. Methodology of processing single-strip blocks of imagery with reduction and optimization number of ground control points in UAV photogrammetry. Remote Sens. 2020, 12, 3336. https://doi.org/10.3390/rs12203336
- 6. Oleniacz G., Ćwiąkała P., Gabryszuk J., et al. GNSS technology and its application in setting out surveys and monitoring. Higher School of Engineering and Economics, Rzeszów, 2015, 1–136.
- 7. Forlani G., Diotri F., Morra di Cella U., Roncella R. Uav block georeferencing and control by on-board gnss data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43B2, 9–16, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-9-2020
- 8. Wierzbicki D. The prediction of position and orientation parameters of UAV for video imaging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2017, XLII-2(W6). https://doi.org/10.5194/isprs-archives-XLII-2-W6-407-2017
- 9. Grzegorzewski M. Navigating an aircraft by means of a position potential in three dimensional space, Annual of Navigation, 2005, 9, 1–111.
- 10. Kaleta W. EGNOS based APV procedures development possibilities in the south-eastern part Of Poland. Annual of Navigation, 2014, 21, 85–94.
- 11. GISPLAY website. Avialable from: https://gisplay.pl/geo/10446-gugik-ostrzega-przed-wplywem-jonosfery-na-dokladnosc-pomiarow-gnss.html, (Accessed: 01.08.2023).
- 12. IGS webiste. Avialable from: https://igs.org/mgex/constellations/#sbas, (Accessed: 01.08.2023).
- 13. Mrozik M. Application of the SBAS positioning method in the aircraft approach procedure, PhD thesis. Silesian University of Technology, Gliwice, 2023, 1–147. (in Polish)
- 14. EGNOS fact sheet. Avialable from: http://www.egnos-pro.esa.int/Publications/2005%20Updated%20Fact%20Sheets/fact_sheet_2.pdf, (Accessed: 01.08.2023).
- 15. EGNOS OS Service definition Document. Avialable from: https://www.euspa.europa.eu/sites/default/files/brochure_os_2017_v6.pdf, (Accessed: 01.08.2023).
- 16. Jan S.-S., Chan W., Walter T. MATLAB algorithm availability simulation tool. GPS Solutions. 2009, 13(4), 327–332, https://doi.org/10.1007/s10291-009-0117-4
- 17. Ciećko A. Analysis of the EGNOS quality parameters during high ionosphere activity. IET Radar Sonar Navigation. 2019, 13, 1131–1139, https://doi.org/10.1049/iet-rsn.2018.5571
- 18. Krasuski K., Jafernik H. Designation the EGNOS ionospheric corrections in flight test in Dęblin (01.06.2010). Autobusy: technika, eksploatacja, systemy transportowe. 2017, 18(6), 822–825. (in Polish)
- 19. Arbesser-Rastburg B. Ionospheric Corrections for Satellite Navigation Using EGNOS, In Proceedings of XXVII URSI General Assembly Conference, 2002, Maastricht (Netherlands), 1–306, https://www.ursi.org/proceedings/procGA02/ursiga02.pdf, (Accessed: 01.08.2023).
- 20. Jakowski N., Leitinger R., Ciraolo L. Behaviour of large scale structures of the electron content as a key parameter for range errors in GNSS applications. Annals of Geophysics. 2004, Supplement to 47(2/3), 1031–1047, https://doi.org/10.4401/ag-3284
- 21. Ciećko A., Grunwald G. Klobuchar, NeQuick G, and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events. Applied Sciences. 2020, 10, 1553, https://doi.org/10.3390/app10051553
- 22. Grunwald G., Ciećko A., Kozakiewicz T., Krasuski K. Analysis of GPS/EGNOS positioning quality using different ionospheric models in UAV navigation. Sensors. 2023, 23, 1112, https://doi.org/10.3390/s23031112
- 23. Lupsic B., Takács B. Analysis of the EGNOS ionospheric model and its impact on the integrity level in the Central Eastern Europe region. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W14, 159–165, https://doi.org/10.5194/isprs-archives-XLII-4-W14-159-2019
- 24. Trilles S., Authié T., Renazé C., Raoul O. Robust EGNOS Availability Performances under Severe Ionospheric Conditions. In: Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+2015), Tampa, Florida, September 2015, 1783–1789.
- 25. Takka E., Belhadj-Aissa A., Yan J., Jin B., Bouaraba A. Ionosphere modeling in the context of Algerian Satellite-based Augmentation System. Journal of Atmospheric and Solar-Terrestrial Physics. 2019, Volume 193, 105092, https://doi.org/10.1016/j.jastp.2019.105092
- 26. Świątek A., Stanisławska I., Zbyszyński Z., Dziak-Jankowska B. Extension of EGNOS ionospheric correction coverage area. Acta Geophysica. 2014, 62, 259–269, https://doi.org/10.2478/s11600-013-0166-5
- 27. Grunwald G., Bakuła M., Ciećko A. Study of EGNOS accuracy and integrity in eastern Poland. The Aeronautical Journal. 2016, 120(1230), 1275–1290, https://doi.org/10.1017/aer.2016.66
- 28. Vuković J., Kos T. Augmentation of EGNOS ionospheric data with locally adapted ionospheric model. Poster presented at 11th European Space Weather Week, Liege, Belgium, November 17–21 2014.
- 29. Ćwiklak J., Grzegorzewski M., Krasuski K. Influence of the Ionospheric Delay on Designation of an Aircraft Position. Communications - Scientific Letters of the University of Zilina. 2020, 22(3), 3–10, https://doi.org/10.26552/com.C.2020.3.3-10
- 30. Grzegorzewski M., Świątek A., Ciećko A., Oszczak S., Ćwiklak J. Study of EGNOS safety of life service during the period of solar maximum activity. Artificial Satellites. 2012, 47, 137–145, https://doi.org/10.2478/v10018-012-0019-5
- 31. Chaggara R., Paparini C., Ngayap-Youmbi U., Duparc B. In depth characterization of EGNOS ground stations response to space weather disturbances. International Technical Symposium on Navigation and Timing (ITSNT) 2017, 14–17 Nov 2017, ENAC, Toulouse, France, 1–7.
- 32. Béniguel Y., Orus-Perez R., Prieto-Cerdeira R., Schlueter S., Scortan S., Grosu A. MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes. 1–8, https://ies2015.bc.edu/wp-content/uploads/2015/05/082-Beniguel-Paper.pdf, (Accessed: 01.08.2023).
- 33. Juan J. M., Sanz J., G. Gonzalez-Casado G., Rovira-Garcia A., Ibanez D., Orus R., Prieto-Cerdeira R., Schlüter S. Accurate reference ionospheric model for testing GNSS ionospheric correction in EGNOS and Galileo. 1–8, https://server.gage.upc.edu/papers/2014/73415_Juan.pdf, (Accessed: 01.08.2023).
- 34. Schlüter S., Prieto-Cerdeira R., Orus R., Lam J. P., Juan Zornoza J. M. Sanz J., Hernández Pajares M. Characterization and modelling of the ionosphere for EGNOS development and qualification. A: The European Navigation Conference. In: Proceedings of ENC 2013, Austria: 2013, 1–5.
- 35. IGS Technical Meeting 2004. Avialable from: http://ftp.aiub.unibe.ch/igsws2004/Atmosphere_Ionosphere/FRAM1_Hernandez_1.pdf, (Accessed: 01.08.2023).
- 36. Stankov S., Warnant R., Stegen K. Ionosphere effects on aviation, In: Proceedings of the Eurocontrol LATO (Aircraft Landing and Take-Off) Work Group Meeting, 7 July 2008, Toulouse, France, 1–17.
- 37. Sauer K., Ochieng W.Y., Integrated use of GPS and EGNOS Carrier Phase Observations for High Precision Kinematic Positioning, In: Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September 2002, 914–920.
- 38. Nie Z., Zhou P., Liu F., Wang Z., Gao Y. Evaluation of orbit, clock and ionospheric corrections from five currently available SBAS L1 services: methodology and analysis. Remote Sens. 2019, 11, 411, https://doi.org/10.3390/rs11040411
- 39. Pandele A., Croitoru A., Ion M., Buehler S. ROSISMON: Results and Multi-SBAS Fusion at user Level for Non-SoL Applications, In: Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, Florida, September 2018, 1124–1143, https://doi.org/10.33012/2018.15937
- 40. Tabti, L., Kahlouche, S., Benadda, B. Performance of the EGNOS system in Algeria for single and dual frequency. International Journal of Aviation, Aeronautics, and Aerospace. 2021, 8(3). https://doi.org/10.58940/2374-6793.1622
- 41. Beldjilali B., Kahlouche S., Tabti L. Assessment of EGNOS performance for civil aviation flight phase in the edge coverage area. Int. J. Aviat. Aeronaut. Aerosp. 2020, 7, 1–25, https://doi.org/10.15394/ijaaa.2020.1479
- 42. Volkov D. M., Zlunicyn O. I., Kocherova M. K., Talalaev A. B., Tikhonov V. V., Shishkovskaya K. G.. On a signal modeling technique for a back-inclined sensing in the multilayered ionosphere. Vestnik TVGU. Ser. Prikl. Matem. 2016, 2, 123–143.
- 43. Sernov V. G., Isayev I. V., Filimonova D. V. A Method to calculate the ionospheric delay in ionospheric grid points in the wide-area functional augmentation of GLONASS. Rocket-Space Device Engineering and Information Systems. 2022, 9(2), 56–61, (in Russian).
- 44. Lim C.-S., Byungwoon P., Hyoungmin S., Jaegyu J., Seungwoo S., Junpyo P., Sung-Chun B., Chul-Soo L. Analysis on the multi-constellation SBAS performance of SDCM in Korea. Journal of Positioning, Navigation, and Timing. 2016, 5(4), 181–191, https://doi.org/10.11003/JPNT.2016.5.4.181
- 45. Engineering statics website. Avialable from: https://engineeringstatics.org/weghted-average.html, (Accessed: 01.08.2023).
- 46. Rovira-Garcia, A., Juan, J.M., Sanz, J. et al. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J. Geod. 2016, 90, 229–240, https://doi.org/10.1007/s00190-015-0868-3
- 47. Specht C., Pawelski J., Smolarek L., Specht M., Dabrowski P. Assessment of the positioning accuracy of DGPS and EGNOS systems in the bay of Gdansk using maritime Dynamic Measurements, Journal of Navigation. 2019, 72(3), 575–587, https://doi.org/10.1017/s0373463318000838
- 48. Ciećko A., Bakuła M., Grunwald G., Ćwiklak J. Examination of multi-receiver GPS/EGNOS positioning with kalman filtering and validation based on CORS stations. Sensors. 2020, 20, 2732, https://doi.org/10.3390/s20092732
- 49. Kaniewski P. Joint processing of AHRS and GPS navigation data with kalman filter. Biuletyn WAT. 2006, 55(1), 271–284. (in Polish)
- 50. Drony.net website. Avialable from: https://www.drony.net/matrice-300-rtk-dji.html, (Accessed: 01.08.2023).
- 51. RTKLIB webiste. Avialable from: http://rtklib.com/, (Accessed: 01.08.2023).
- 52. MAGNET Tools Website. Available from: https://www.topconpositioning.com/office-software-and-services/survey-software/magnet-tools, (Accessed: 01.08.2023).
- 53. Scilab webiste. Available from: https://www.scilab.org/, (Accessed: 10.09.2022).
- 54. Specht C., Mania M., Skóra M., Specht M. Accuracy of the GPS positioning system in the context of increasing the number of satellites in the constellation. Polish Maritime Research. 2015, 22, 9–14, https://doi.org/10.1515/pomr-2015-0012
- 55. Bakota M., Kos S., Mrak Z., Brčić D. A new approach for improving GNSS geodetic position by reducing residual tropospheric error (RTE) based on surface meteorological data. Remote Sens. 2023, 15, 162, https://doi.org/10.3390/rs15010162
- 56. Maciąg K., Maciąg M., Leń P. Implementation of unmanned aerial vehicles in the automated assessment of geodetic database validity. Advances in Science and Technology Research Journal, 2024, 18(7), 379–395.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c395e75c-581d-41e6-bb1a-47b9609eb325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.