PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of cavity edges shape on flow induced noise

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, impact of the cavity shape on flow-generated noise is analysed. As reference model, the classic rectangular cavity with perpendicular corners was used. The impact of both upstream and downstream edges was analyzed. In this paper, authors used hybrid method, where the flow was computed by means of Spalart-Allmaras Detached Eddy Simulations (DES) model, and the acoustic wave propagation was calculated by Curle acoustic analogy.
Rocznik
Strony
art. no. 2021110
Opis fizyczny
Bibliogr. 14 poz., il. kolor., rys., 1 wykr.
Twórcy
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
Bibliografia
  • 1. D. Rockwell, E., Naudascher, Review - Self-Sustaining Oscillations of Flow Past Cavities, J. Fluids Eng. 100(2), 1978.
  • 2. M.B. Tracy, E.B., Plentovich, Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds, Nasa Technical Paper 3669, 1997.
  • 3. P. Lafon, S. Caillaud, J.P. Devos, C., Lambert. Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line, Journal of Fluids and Structures, 18(6), 2003.
  • 4. G.B. Ashcroft, K. Takeda, X. Zhang. A numerical investigation of the noise radiated by a turbulent flow over a cavity, Journal of Sound and Vibration, 265(1):43-60, 2003,
  • 5. H. Kim, Z. Hu, D. Thompson. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise, Journal of Wind Engineering & Industrial Aerodynamics, 201:104159 2020.
  • 6. F. Moukalled, L. Mangani, M. Darwish. The Finite Volume Methods in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab, Springer Science+Business Media, 2016.
  • 7. J. Blazek, Computational Fluid Dynamics. Principles and Applications, Elsevier Ltd., 2015.
  • 8. P. R. Spalart, S. R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows, Recherche Aerospatiale, 1:5-21, 1994.
  • 9. P. Sagaut. Large Eddy Simulation for Incompressible Flows. An Introduction. Springer Science+Business Media, 2006.
  • 10. P. R. Spalart, W. H. Jou, M. Strelets, S. R. Allmaras. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach, 1st AFOSR Int. Conf. on DNS/LES, Aug. 4-8, 1997.
  • 11. M. J. Lighthill, M. H. Newman. On sound generated aerodynamically I. General theory, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107), 1952.
  • 12. S. Glegg, W. Devenport. Aeroacoustics of Low Mach Number Flows. Fundamentals, Analysis and Measurement, Elsevier Inc., 2017.
  • 13. N. Curle. The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society A, 231, 505-514, 1955.
  • 14. I. Czajka. Modelowanie zjawisk akustycznych w przepływach aerodynamicznych, Wydawnictwa AGH, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3918c99-d382-4dce-9beb-1b84f8109e3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.