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Abstract In this paper, impact of the cavity shape on flow-generated noise is analysed. As reference model, 
the classic rectangular cavity with perpendicular corners was used. The impact of both upstream and 
downstream edges was analyzed. In this paper, authors used hybrid method, where the flow was computed 
by means of Spalart-Allmaras Detached Eddy Simulations (DES) model, and the acoustic wave propagation 
was calculated by Curle acoustic analogy. 
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1. Introduction 

The problem of noise generation by the flow over cavity is important due to how often simple model of 
cavity can be used to analyze complex objects. With cavities, the flow phenomena occurring in landing gear, 
hatches of aircraft, valves and branches in ducts, elements of trains and cars, can be easily modelled [1]. 
Most research regarding cavities are limited to high flow velocities [2], while phenomena ocurring in 
incompressible range are not so well analyzed [3]. However, the noise generated with low velocity flow 
over cavities, for example in ventilation ducts, may be a significant problem. It is necessary to study the 
influence of various factors that affect the noise. 

In this paper, the influence of the shape of the cavity on the generated noise is discussed. This is an issue 
already under research, however, as mentioned before, for velocities greater than those found in ventilation 
ducts [4,5]. Here we have analyzed the flow over 5 different geometric models of the cavity and acoustic 
pressure generated by it. 

The flow over cavity is described by incompressible time-dependent Navier-Stokes equations, solved 
with finite volume method and PIMPLE algorithm used by OpenFoam solver. The analyzed velocities allow 
the assumption that the flow was turbulent Spalart Allmaras DES model was used to solve the turbulent 
flow. The acoustic pressure was computed by Lighthill’s acoustic analogy. 

 

1. Methodology 

1.1. Flow modelling 

The equations used to describe the flow were the continuity (1) and Navier-Stokes equation (2) [6]: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑣𝑖) = 0, (1) 

𝜕

𝜕𝑡
(𝜌𝑣𝑖) +

𝜕

𝜕𝑥𝑗

(𝜌𝑣𝑗𝑣𝑖) = 𝑓𝑖, (2) 

where 𝜌 – density, 𝑣𝑖  – velocity in 𝑖 direction, 𝑓𝑖  – external forces in i direction. 
Assuming simplifications such as fluid incompressibility and Stokes hypothesis [7], the equations (1, 2) takes 

the form: 
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𝜕𝑣𝑖

𝜕𝑥𝑖

= 0, (3) 

𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

+ 𝜈∇2𝑣𝑖 , (4) 

where: 𝑝 – pressure, 𝜈 = 𝜇/𝜌 – kinematic viscosity coefficient. 

1.2. Turbulence modelling 

In cases where the flow is turbulent, it is practically impossible to solve the above equations numerically 
in a direct manner using direct numerical simulations (DNS). In this study, we used hybrid method, called 
Detached Eddy Simulation (DES). This method combines Reynolds-Averaged Navier-Stokes (RANS) and 
Large Eddy Simulation (LES) methods, depending on the size of the computational mesh. Methods 
mentioned above are described in greater detail in [7]. 

The RANS method is based on the decomposition of the flow into a time-averaged part and random 
fluctuations The incompressible continuity (3) and Navier-Stokes (4) equations takes the form [7]: 

𝜕𝑣𝑖

𝜕𝑥𝑖

= 0, (5) 

𝜌
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜏𝑖𝑗 + 𝜏𝑖𝑗
𝑅 ), (6) 

where 𝜙 = 𝜙 + 𝜙′, 𝜙 – time-averaged variable, 𝜙′ – fluctuating variable, 𝜏𝑖𝑗 = 𝜇 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) – viscous stress 

tensor, 𝜏𝑖𝑗
𝑅 = −𝜌𝑣′𝑖𝑣′𝑗  – Reynolds stress tensor. 

Reynolds stress tensor 𝜏𝑖𝑗
𝑅  introduces new unknown variables, that must be modelled to solve the 

equations. The most common solution to this problem (called the closure problem) is to use the Boussinesq 
hypothesis. It allows to determine the Reynolds tensor according to [7]: 

𝜏𝑖𝑗
𝑅 = 2𝜇𝑇 (

𝜕𝑣𝑖

𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖

) −
2

3
𝜌𝑘𝛿𝑖𝑗, (7) 

where: 𝑘 – turbulence kinetic energy, 𝜇𝑇 – turbulent viscosity. 
The turbulent viscosity is determined on the basis of additional equations resulting from the assumed 

turbulence model, in this case – Spalart-Allmaras model [8]. This model is based on transport equation for 
a viscosity-like variable 𝜈̂. 
The model equation is given by: 

𝜕𝜈̂

𝜕𝑡
+ 𝑣𝑗

𝜕𝜈̂

𝜕𝑥𝑗

= 𝑐𝑏1(1 − 𝑓𝑡2)𝑆̂𝜈̂ − [𝑐𝑤1𝑓𝑤 −
𝑐𝑏1

𝜅2
𝑓𝑡2] (

𝜈̂

𝑑
)

2

=
1

𝜎
[

𝜕

𝜕𝑥𝑗

((𝜈 + 𝜈̂)
𝜕𝜈̂

𝜕𝑥𝑗

) + 𝑐𝑏2

𝜕𝜈̂

𝜕𝑥𝑖

𝜕𝜈̂

𝜕𝑥𝑖

] , (8) 

where: 𝜈̂ – model variable – eddy viscosity, 𝑐𝑏1, 𝑐𝑤1, 𝑐𝑏2, 𝜅, 𝜎, – constants of the model, 𝑓𝑤, 𝑓𝑡2, 𝑆̂ – additional 
functions, described in [8]. 

Turbulent viscosity 𝜇𝑇  required by Boussinesq assumption given by eq. (7) is calculated according to 
the formulas (9), (10), (11): 

𝜇𝑇 = 𝜌𝜈̂𝑓𝑣1, (9) 

𝑓𝑣1 =
𝜒3

𝜒3 − 7.1
, (10) 

𝜒 =
𝜈̂

𝜈
. (11) 
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The LES method is based on spatial filtering, the flow variables are decomposed on part solved 

numerically (eddies larger than 𝛥̂ ) and modelled part. After decomposition the continuity (3) and Navier-
Stokes (4) equations takes the form [9]: 

𝜕𝑣𝑖

𝜕𝑥𝑖

= 0, (12) 

𝜕𝑣𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑣𝑖𝑣𝑗) = −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

+ 𝜈∇2𝑣𝑖 −
𝜕𝜏𝑖𝑗

𝑆

𝜕𝑥𝑗

, (13) 

where: 𝜙 = 𝜙 + 𝜙′, 𝜙 – filtered variable, 𝜙′ – modelled variable, 𝜏𝑖𝑗
𝑆 = 𝑣𝑖𝑣𝑗 − 𝑣𝑖𝑣𝑗 – subgrid scale stress 

(SGS) tensor. 

The SGS tensor describes the effect of scales smaller than 𝛥̂ and must be modeled to be able to solve the 
closure problem and the equations themselves. 

In the case of the DES hybrid method, the model used to compute the SGS tensor is the Spalart-Allmaras 
turbulence model given by the equation (8). There is one significant change in the model itself, the distance 
from the nearest wall 𝑑 is replaced by the value given by the equation [10]: 

𝑑̃ = min(𝑑, 𝐶𝐷𝐸𝑆𝛥), (14) 

where: 𝐶𝐷𝐸𝑆 = 0.65 – empirical constant, 𝛥 = max𝑥, 𝑦, 𝑧 – longest cell edge. 

1.3. Acoustic analogies 

The noise generated by the flow was calculated from the acoustic analogies that were formulated by 
Lighthill [11], given by [12]: 

𝜕2𝜌′

𝜕𝑡2
− 𝑐∞

2
𝜕2𝜌′

𝜕𝑥𝑖
2 =

𝜕2𝑇𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

, (15) 

where: 𝑝′ – acoustic pressure, 𝑐∞ – speed of sound, 𝑇𝑖𝑗 = 𝜌𝑣𝑖𝑣𝑗 + 𝑝𝑖𝑗 − 𝑐∞
2 𝜌𝛿𝑖𝑗  – Lighthill tensor. 

This equation assumes that sound is created as a result of flow in an unbounded space. The Lighthill 
equation alone cannot therefore be used for noise calculations in the duct flow. 
This equation was solved by Curle using the Green’s method [13]. Curle assumed that although the acoustic 
wave does not interact with the walls, it can be generated by acoustic sources that arise due to the 
interaction of the flow with the walls [14]. The Curle equation is given by:  

𝜌′(𝐱, 𝑡)𝑐∞
2 = ∫ [

𝜕𝜌𝑣𝑗

𝜕𝜏
]

𝜏=𝜏∗
𝑆

𝑛𝑗d𝑆(𝐲)

4𝜋|𝐱 − 𝐲|
−

𝜕

𝜕𝑥𝑖

∫ [𝑝𝑖𝑗 + 𝜌𝑣𝑖𝑣𝑗]
𝜏=𝜏∗

𝑆

𝑛𝑗d𝑆(𝐲)

4𝜋|𝐱 − 𝐲|
+

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

∫ [𝑇𝑖𝑗(𝐲, 𝜏)]
𝜏=𝜏∗

𝑉

d𝑉(𝐲)

4𝜋|𝐱 − 𝐲|
. (16)

 

Additionally, assuming simplifications, such as impermeable walls, an acoustically compact source and 
small Mach numbers, the equation takes the form [14]:  

𝜌′(𝐱, 𝑡)𝑐∞
2 ≈

𝑥𝑖

4𝜋|𝐱|2𝑐∞

[
𝜕𝐹𝑖

𝜕𝜏
]

𝜏=𝜏∗
 𝐹𝑖(𝜏) = ∫𝑝𝑖𝑗

𝑆

𝑛𝑗d𝑆(𝐲). (17) 

The equation in this form relates the time derivative of the forces acting on the walls due to flow with 
the acoustic pressure generated by the flow. It has been implemented and is available in the OpenFOAM 
software used to model the flows over the cavities. 
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2. Numerical modelling 

2.1. Geometric model 

The simulation of the flow over the cavities was carried out for five models, one of which was the reference 
model. It was a classical rectangular cavity with perpendicular corners (Fig. 1a), while the other models 
differed in shapes of the leading and trailing edges. Two cases with chamfered edges (Fig. 1b, 1c) and two 
with rounded edges (Fig. 1d, 1e). In each case, the cavities had the same geometric dimensions and a 𝐿/𝐷 
ratio of 2. These dimensions are presented in Tab. 1. 

 

Tab. 1. Dimensions of the model 

𝐿 𝐷 ℎ 𝑙1 𝑙2 

0.4 0.2 0.6 0.15 1.5 

 

The length of the computational domain behind the cavity resulted from the necessity to observe the 
turbulence and fluctuations that may occur as a result of the phenomena occurring in the cavity. The cavity 
itself was considered to be placed in a channel of height h and width equal to 0.3m. Due to the fact that the 
simulations were two-dimensional, the width of the channel was used only for the purpose of calculating 
the forces acting on the walls of the cavity and channel. 

The rounding radius for the rounded cavities was 0.25D - 0.05m, while the chamfered corner cavities 
were cut at an angle of 45∘, 0.05m from the corner. 

a) 

 

b) 

 

d) 

 

c) 

 

e) 

 

Fig. 1. Analyzed models of the cavity: a) reference model (RM), b) chamfered upstream edge (CUE),  
c) chamfered downstream edge (CDE) d) rounded upstream edge (RUE),  

e) rounded downstream edge (RDE). 

2.2. Initial and boundary conditions 

The modeled fluid was air at the temperature of 20∘C, the density and kinematic viscosity of which were 
𝜌 = 1.2 kg/m and 𝜈 = 1.5 ⋅ 10−5  m2/s. 

It was necessary to define the initial conditions in the entire computational domain and the boundary 
conditions at individual boundaries. More precisely, the initial and boundary values of velocity 𝑣, pressure 
𝑝, turbulent viscosity 𝜈𝑇  and parameter 𝜈̂, resulting from the adopted Spalart-Allmaras turbulence model, 
had to be determined. 
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The domain could be divided into 4 types of boundaries: inlet, outlet, walls and the "empty" boundary. 
The empty condition was assumed on the front and back of the three-dimensional domain with one cell in 
thickness so that the model was treated as two-dimensional. 

The initial and boundary condition values are presented in Tab. 2.  
 

Tab 2. Initial and boundary conditions. 

 Velocity 𝑣 Pressure 𝑝 
Turbulent 

viscosity 𝜐𝑇 
Parameter 𝜈̂ 

Inlet 𝑣𝑥 = 10, 𝑣𝑦,𝑧 = 0 
𝜕 𝑝

∂𝑥𝑛

= 0 Calculated ν̂ = 10−5 

Outlet 
𝜕 𝑣𝑥,𝑦,𝑧

𝜕 𝑥𝑛

= 0 𝑝 = 0 calculated ν̂ = 10−5 

Walls 𝑣𝑥,𝑦,𝑧 = 0 
𝜕 𝑝

∂𝑥𝑛

= 0 ν𝑇 = 0 
ν̂

∂𝑥𝑛

= 0 

Internal domain 
Initialized with 

potential flow solver 
𝑝 = 0 ν𝑇 = 0 ν̂ = 10−5 

 
3. Results and discussion 

Acoustic pressure has been calculated using the equation (17) implemented directly in OpenFOAM. It was 
evaluated for the listener placed 5 m directly above the cavity (for center of coordinate system at upstream 
edge, the listener was placed at (0.2,5,0.15)). The sound pressure level 𝐿𝑝 obtained after filtering the 

computed signal with finite impulse response filter and further processing is shown in Fig. 2. The obtained 
sound pressure levels for each case were also shown in third-octave bands in  Tab. 3. 

 
Fig. 2. Spectrum of sound pressure level for listener 5 m above the cavity, for different shapes. 

The results confirm the preliminary assumption that the edge change may have a significant impact on 
the generated noise. As shown in Fig 2., changing the shape of the downstream edge of cavity helps to reduce 
noise, in comparison to reference edge. This is especially the case when a rounded downstream edge is used. 
In case of chamfered downstream edge, on the one hand, lower sound pressure levels are obtained, and on 
the other hand, especially in range of 400 ÷ 750 Hz, the SPL is greater compared to the reference model. 
The nature of the resulting fluctuations is also different, there is tonal noise in this range. 

In the case of modified upstream edges, this change increases the sound pressure level compared to the 
reference model, both for rounded and chamfered edges. 
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Tab. 3. Third-octave band sound pressure level for listener 5 m above the cavity. 

Central 
Frequency 

𝑓𝑐 [Hz] 
Sound Pressure Level 𝐿𝑝 [dB] 

 a) RM b) CUE c) CDE d) RUE e) RDE 
16.00 74.27 74.44 63.24 71.33 62.12 
31.50 74.69 76.61 69.02 77.42 65.01 
63.00 74.55 76.29 70.54 79.18 62.86 

125.00 72.09 71.14 66.10 73.86 54.48 
250.00 62.87 63.66 51.97 60.70 45.79 
500.00 44.60 51.42 49.08 50.40 45.50 

1000.00 54.25 54.15 56.14 52.69 55.05 
2000.00 60.73 62.29 63.19 61.23 60.91 
4000.00 67.69 68.66 69.62 68.11 67.59 
8000.00 74.17 75.03 75.93 74.45 74.03 

16000.00 79.97 80.75 81.58 79.96 79.65 

 

In Fig.3. the flow pressure and velocity distributions are shown. The different flow characteristics 
between particular edge shapes are clear, the size and distribution of vortices in the cavities differs, as well 
as the size and frequency of the detached vortices in downstream part of the duct. 

In the case of chamfered downstream, rounded upstream and downstream edges, (models c), d), e)), 
two main vortices inside the cavity can be distinguished, the larger of which, at the downstream side of the 
cavity, covers about 70% of it’s volume. For different time steps (not shown here) the behaviour of the 
vortices in the cavity looks similar – two main vortices can be distinguished, but their percentage share 
changes, up to 50% for each vortex. The only cavity that does not behave this way is cavity with chamfered 
upstream edge. 

 

a) Pressure field – reference model 

 

b) Velocity field  – reference model 

 
c) Pressure field. – chamfered upstream edge 

 

d) Velocity field – chamfered upstream edge 
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e) Pressure field – chamfered downstream edge 

 

f) Velocity field – chamfered downstream edge

 
g) Pressure field – rounded upstream edge

 

h) Velocity field – rounded upstream edge

 
i) Pressure field – rounded downstream edge

 

j) Velocity field– rounded downstream edge

 
Fig. 3. Pressure and velocity distributions of the flow over cavities at time 𝑡 = 1.2 s. 

 
4. Conclusions 

This work investigated the impact of cavity edges shape on flow-generated noise. Main goal of the study 
was to determine how acoustic pressure at the listener changes depending on the shape used. The flow-
induced noise was computed using hybrid DES-Curle method. 

The obtained results show that the change in the shape of the edges of the cavity has an impact on the 
formation of sound. This is especially true when changing the downstream edge. Change of downstream 
edge from perpendicular to rounded allowed to reduce the sound pressure level by approx. 10 dB. Change 
of the upstream edge, to both rounded and chamfered had no beneficial effect on the generated noise. 

The results are encouraging for further work, both on analysing different edge and walls shapes and for 
applications. The future work will focus on the study of the various diameters of the fillet on the generated 
noise. Also, it should be tested, what will be the effect of changing both edges, in different configurations. 
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