PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability analysis of electrohydraulic servo valve suffering common cause failures

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza niezawodności serwozaworu elektrohydraulicznego narażonego na uszkodzenia spowodowane wspólną przyczyną
Języki publikacji
EN
Abstrakty
EN
The electrohydraulic servo valve (EHSV) is widely used in many engineering fields. Its reliability is of great importance to the reliability and safety of entire servo control systems. With the aim of analyzing and evaluating reliability of EHSV, this paper firstly presents the physical structure and functional principle of EHSV. It is followed by the Failure Mode, Effects and Criticality Analysis (FMECA). From the analysis, the common cause failures (CCF) in the studied EHSV are identified. Lastly, a method that can quantitatively analyze reliability and failure rate of EHSV with considering the common cause failures is proposed. It is observed from the study that the failure rate of the EHSV with CCF is lower than the failure rate without considering CCF.
PL
Serwozawory elektrohydrauliczne (EHSV) mają szerokie zastosowanie w wielu dziedzinach inżynierii. Ich niezawodność ma decydujące znaczenie dla niezawodności i bezpieczeństwa całych układów sterowania serwomechanizmami. W celu analizy i oceny niezawodności zaworów EHSV, w pracy przedstawiono najpierw ich budowę fizyczną i zasadę działania. Następnie przeprowadzono analizę przyczyn, skutków i krytyczności uszkodzeń (FMECA). Na podstawie tej analizy określono uszkodzenia zaworu EHSV spowodowane wspólną przyczyną (CCF). Wreszcie, zaproponowano metodę, za pomocą której można ilościowo analizować niezawodność i awaryjność EHSV z uwzględnieniem uszkodzeń spowodowanych wspólną przyczyną. Badania wykazały, że awaryjność EHSV przy uwzględnieniu CCF jest niższa niż w wypadku nieuwzględnienia CCF.
Rocznik
Strony
354--359
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu Sichuan, 611731 P. R. China
autor
  • School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu Sichuan, 611731 P. R. China
autor
  • School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu Sichuan, 611731 P. R. China
autor
  • School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu Sichuan, 611731 P. R. China
autor
  • School of Mechanical, Electronic, and Industrial Engineering, University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu Sichuan, 611731 P. R. China
Bibliografia
  • 1. Borcsok J, Holub P. Different approaches for probability of common cause failure on demand calculations for safety integrity systems. Proceedings of International Conference on Computer Systems and Applications 2008; 1052-1057.
  • 2. Borcsok J, Schaefer S, Ugljesa E. Estimation and evaluation of common cause failures. Proceedings of Second International Conference on Systems 2007; 41-49.
  • 3. Bowles JB, Pelaez CE. Fuzz logic prioritization of failures in a system failure mode, effects and critically analysis. Reliability Engineering and System Safety 1995; 50(2): 203-213.
  • 4. Catelani M. FMECA technique on photovoltaic module. Proceedings of Instrumentation and Measurement Technology Conference, 2011; 1-6.
  • 5. Chen B, Lin ML. The present research and prospects of electro-hydraulic servo vale. Chinese Hydraulics & Pneumatics 2005; 33(6): 5-8.
  • 6. Dai C G, Wang X H, Zhang X. Fuzzy comprehensive evaluation in FMEAC of electro-hydraulic servo valve. Journal of Beijing University of Aeronautics and Astronautics 2011; 37(12): 1575-1578.
  • 7. Edwards GT, Watson IA. A study of common mode failures SRD-R-146. United Kingdom Atomic Energy Authority, Safety and Reliability Directorate, 1979.
  • 8. EPRI NP-3837. A Study of Common Cause Failures. Phase 2: A Comprehensive classification System for component fault analysis. Los Alamos Technical Associates Inc, 1985.
  • 9. Fleming KN. A reliability model for common mode failures in redundant safety systems. General Atomic Report, GA-13284, 1974.
  • 10. Fleming KN, Mosles A, Deremer RK. A systematic procedure for the incorporation of common cause events into risk and reliability models. Nuclear Engineering and Design 1986; 93(5): 245-273.
  • 11. Humphreyes P, Johnston B D. Dependent Failure Procedure Guide SRD-R-418. United Kingdom Atomic Energy Authority, Safety and Reliability Directorate, 1987.
  • 12. Johnston BD, Crackett J. Common Cause Failure Reliability Benchmark exercise. SRD-R-383. United Kingdom Atomic Energy Authority, Safety and Reliability Directorate, 1985.
  • 13. Li T, Yang SL. Common fault analysis of electro-hydralic press servo valve on certain plane. Chinese Aviation Maintenance & Engineering 2011; 29(2): 73-75.
  • 14. Mauri G. Integrating Safety Analysis Techniques, Supporting Identification of Common Cause Failures. Doctor of Philosophy thesis, University of York, Department of Computer Science, 2000.
  • 15. Mi J, Li Y, Huang H-Z, Liu Y, Zhang X-L. Reliability analysis of multi-state system with common cause failure based on Bayesian networks. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15(2): 169-175.
  • 16. Mondal N, Datta BN. A study on electro hydraulic servovalve controlled by a two spool valve. International Journal of Emerging Technology and Advanced Engineering 2013; 23(3): 479-484.
  • 17. Mosles A, Siu NO. A multi-parameter, event-based common cause failure model. Proceedings of the Ninth international Conference on Structural Mechanics in Reactor Technology 1987: 147-152.
  • 18. Rausand M. Reliability centered maintenance. Reliability Engineering and System Safety 1998; 60(2): 121-132.
  • 19. U.S.A. Depatment of Defense. MIL-STD-1629 Procedures for Perfoming a Failre Mode, Effects and Criticality Analysis. 1980.
  • 20. Vaurio JK, An implicit method for incorporating common-causefailures in system analysis. IEEE Transactions on Reliability 1998; 47(2): 173-180.
  • 21. Wei BC. A unified approach to failure mode, effects and criticality analysis (FMECA). Proceedings of Annual Reliability and Maintainability Symposium 1991; 260-271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c38e6fa6-75de-4b91-a972-7fa0aa702ba7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.