Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Indoor activities involving cooking and warming, outdoor sources, smoking, and candle and in-cense burning may introduce a massive portion of polycyclic fragrant hydrocarbons. These are well known for their mutagenicity and carcinogenicity and are omnipresent in urban situations as a result of the combustion of fuel. Due to small particle size, penetration has been suspected to be one major source of indoor polycyclic aromatic hydrocarbons. In the current study, the manufacturing of three types of filters (electrostatic charge-based, pomegranate peel biochar-based, and birds’ feathers-based) was carried out. Their efficiency was tested to remove molecules bounded PAHs and also other geno-toxic compounds associated with these particles. The electrostatic filter was more efficient (27.42%) than pomegranate peel-based and birds’ feathers-based filters (13.86% and 8.32%, respectively). The carcinogenetic effects of PAHs emitted from outdoor and indoor pollutants can be reduced using these kinds of filters.
Czasopismo
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
autor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
autor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
autor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
autor
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
Bibliografia
- [1] PHILIPS D.H., Polycyclic aromatic hydrocarbons in the diet, Mut. Res. Genet. Toxicol. Environ. Mut., 1999, 443, 139e147. DOI: 10.1016/S1383-5742(99)00016-2.
- [2] STOŁYHWO A., SIKORSKI Z.E., Polycyclic aromatic hydrocarbons in smoked fish – a critical review, Food Chem., 2005, 91 (2), 303–311. DOI: 10.1016/j.foodchem.2004.06.012.
- [3] ABDEL-SHAFY H.I., MANSOUR M.S.M., A review on polycyclic aromatic hydrocarbons: source, environ-mental impact, effect on human health and remediation, Egypt. J. Pet., 2015, 25, 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
- [4] YUSTY L.M.A., DAVINA C.J.L., Supercritical fluid extraction and high performance liquid chromatography fluorescence detection method polycyclic aromatic hydrocarbons investigation in vegetable oil, Food Control, 2005, 16, 59e64. DOI: 10.1016/j.foodcont.2003.11.008.
- [5] VAZQUEZ T.S., GARCIA F.M.S., AMIGO G.S., LAGE Y.M.A., SIMAL L.J., Enrichment of benzo[a]pyrene in vegetable oils and determination by HPLC-FL, Talanta, 2000, 51, 1069e1076. DOI: 10.1016/S0039-9140(00)00300-3.
- [6] EIGUREN F.A., MIGUEL A.H., JAQUES P.A., SIOUTAS C., Evaluation of a Denuder-MOUDI-PUF sampling system to measure the size distribution of semi-volatile polycyclic aromatic hydrocarbons in the atmosphere, Aerosol Sci.Technol., 2003, 37 (3), 201–209. DOI: 10.1080/02786820300943.
- [7] EIGUREN F.A., MIGUEL A.H., Size-resolved polycyclic aromatic hydrocarbon emission factors from on-road gasoline and diesel vehicles: temperature effect on the nuclei-mode, Environ. Sci. Technol., 2012, 46, 2607–2615. DOI: http://dx.doi.org/10. 1021/es2037004.
- [8] LI W., WANG C., WANG H., CHEN J., SHEN H., SHEN G., HUANG Y., WANG R., WANG B., ZHANG Y., CHEN H., CHEN Y., SU S., LIN N., TANG J., LI Q., WANG X., LIU J., TAO S., Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of Northern China, Environ. Poll., 2014, 192, 83–90. DOI: 10.1016/j.envpol.2014.04.039.
- [9] SMITH D.J.T., EDELHAUSER E.C., HARRISON R.M., Polycyclic aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan, Environ. Technol., 1995, 16, 45–53. DOI: 10.1080/09593331608616244.
- [10] YUE Z., MANGUN C.L., Preparation of fibrous porous materials by chemical activation. 1. ZnCl2 activation of polymer-coated fibers, Carbon, 2002, 40 (8), 1181–1191. DOI: 10.1016/S0008-6223(01)00268-8.
- [11] CAL M.P., LARSON S.M., ROOD M.J., Experimental and modeled results describing adsorption of ace-tone and benzene onto activated carbon fibers, Environ. Prog. Sustn. En., 1994, 13 (1), 26–29. DOI: 10.1002/ep.670130114.
- [12] CAL M.P., ROOD M.J., LARSON S.M., Removal of VOCs from humidified gas streams using activated carbon cloth, Gas Sep. Purif., 1996, 10 (2), 117–121. DOI: 10.1016/0950-4214(96)00004-7.
- [13] FUERTES A.B., MARBAN G., NEVSKAIA D.M., Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths, Carbon, 2003, 41 (1), 87–96. DOI: 10.1016/S0008-6223(02)00274-9.
- [14] HUANG Z.H., KANG F., LIANG K.M., HAO J., Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater. B, 2003, 98 (1–3), 107–115. DOI: 10.1016/S0304-3894(02)00284-4.
- [15] MUÑIZ J., MARBÁN G., FUERTES A.B., Low temperature selective catalytic reduction of NO over modified activated carbon fibres, Appl. Catal. B: Environ., 2000, 27 (1), 27–36. DOI: 10.1016/S0926-3373(00)00134-X.
- [16] PARK S.J., KIM K.D., Influence of activation temperature on adsorption characteristics of activated carbon fiber composites, Carbon, 2001, 39 (11), 1741–1746. DOI: 10.1016/S0008-6223(00)00305-5.
- [17] ZHONGREN Y., CHRISTIAN L.M., JAMES E., Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers, Carbon, 2002, 40(8), 1181-1191. DOI: 10.1016/S0008-6223(01)00268-8.
- [18] CHIANG B.C., WEY M.Y., YANG W.Y., Control of incinerator organics by fluidized bed activated carbon adsorber, J. Environ. Chem. Eng., 2000, 126 (11), 985–992. DOI: 10.1061/(ASCE)0733-9372(2000)126:11(985).
- [19] CHIANG Y.C., CHIANG P.C., HUANG C.P., Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 2001, 39 (4), 523–534. DOI: 10.1016/S0008-6223(00)00161-5.
- [20] CUDAHY J.J., HELSEL R.W., Removal of products of incomplete combustion with carbon, J. Waste Manage., 2000, 20 (5–6), 339–345. DOI: 10.1016/S0956-053X(99)00335-9.
- [21] GONG R., KEENER T.C., A qualitative analysis of the effects of water vapor on multicomponent vapor-phase carbon adsorption, Air Waste Manage., 1993, 43 (6), 864–872. DOI: 10.1080/1073161X.1993.10467169.
- [22] MASTRAL A.M., GARCÍA T., CALLÉN M.S., MURILLO R., NAVARRO M.V., LÓPEZ J.M., Sorbent characteristics influence on the adsorption of PAC. I. PAH adsorption with the same number of rings, Fuel Proc. Technol., 2002, 77–78, 373–379. DOI: 10.1016/S0378-3820(02)00042-5.
- [23] MASTRAL A.M., GARCÍA T., CALLÉN M.S., MURILLO R., NAVARRO M.V., LÓPEZ J.M., Sorbent characteristics influence on the adsorption of PAC. II: PAH adsorption with different numbers of rings, Fuel Proc. Technol., 2002, 77–78, 365–372. DOI: 10.1016/S0378-3820(02)00043-7.
- [24] SUZUKI M., Adsorption Engineering, Elsevier, Amsterdam 1990.
- [25] TSAI W.T., CHANG C.Y., Surface chemistry of activated carbons and its relevance for effects of relative humidity on adsorption of chlorinated organic vapors, Chemosphere, 1994, 29 (12), 2507–2515. DOI: 10.1016/0045-6535(94)90053-1.
- [26] WEY M.Y., YU L.J., JOU S.I., CHIANG B.C., WEI M.C., Adsorption on carbon and zeolite of pollutants from flue gas during incineration, J. Environ. Eng., 1999, 125 (10), 925–932. DOI: 10.1061/(ASCE)07339372(1999)125:10(925).
- [27] NOH K.C., HWANG J., The effect of ventilation rate and filter performance on indoor particle concentration and fan power consumption in a residential housing unit, Indoor Built. Environ., 2010, 19, 444–452. DOI: 10.1177/1420326X10373213.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c38bb337-d96f-4d6c-add7-0880f0c1db95