PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of properties of polymer-ceramic filaments modified with aluminosilicates for use in 3D printing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study was conducted on selected nanoclay fillers, i.e. montmorillonite (MMT) or halloysite (HNT) in polylactic acid (PLA) pellets for the manufacture of filaments for 3D printing. A 1-3 weight fraction of the filler was used. In order to compatibilize the nanofiller with the PLA, two methods were employed to facilitate dispersion of the nanoclay particles: using prewetting of the nanoclay in dichloromethane (DCM) and introducing a short-chain plasticizer (polyethylene glycol, PEG200) during the homogenization process. The effectiveness of filler dispersion was verified by performing thermal analysis, i.e. thermogravimetry and differential scanning calorimetry (DG/DSC), as well as by microscopic observations. The processability of the obtained nanocomposite filament was verified for the finished products manufactured from both of the materials by FDM printing. Mechanical strength and impact tests were conducted on the printed samples. The results showed that the prints made from the nanocomposite filaments have better tensile strength (by 25 and 10% for PLA/HNT and PLA/MMT, respectively) compared to prints made from the pure polymer filament.
Rocznik
Strony
56--63
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Stansbury J.W., Idacavage M.J., 3D printing with polymers: challenges among expanding options and opportunities, Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, 54-64.
  • [2] Masood S.H., Song W.Q., Development of new metal/polymer materials for rapid tooling using fused deposition modeling, Mater. Des. 2004, 25, 587-594.
  • [3] Mehrpouya M., Dehghanghadikolaei A., Fotovvati B., Vosooghnia A., Emamian S.S., Gisario A., The potential of additive manufacturing in the smart factory Industrial 4.: A review, Applied Sciences 2019, 9(18), 3865.
  • [4] Skoratko A., Katzer J., Harnessing 3D Printing of Plastics in Construction – Opportunities and Limitations Materials 2021, 14(16), 4547.
  • [5] Petrovic V., Vicente Haro Gonzalez J., Jordá Ferrando O., Delgado Gordillo J., Ramón Blasco Puchades J., Portolés Griñan L., Additive layered manufacturing: Sectors of industrial application shown through case studies, Int. J. Prod. Res. 2011, 49, 1061-1079.
  • [6] Kumar L.J., Nair C.K., Current trends of additive manufacturing in the aerospace industry, In: Advances in 3D Printing & Additive Manufacturing Technologies; Springer, Berlin/Heidelberg 2017, 39-54.
  • [7] Alzahrani M., Modofication of Recycled Poly(ethylene terephthalate) for FDM 3D-Printing Applications 2017.
  • [8] Guide for 3d-printing materials – Treed Filaments – 3D Filaments Manufacturer, Available: http://treedfilaments.com/2016/11/21/guide-for-3d-printing-materials/.
  • [9] Wang X., Jiang M., Zhou Z., Gou J., Hui D., 3D printing of polymer matrix composites: A review and prospective, Compos. Part B Eng. 2017, 110, 442-458.
  • [10] Hwang S., Reyes E.I., Sik Moon K., Rumpf R.C., Kim N.S., Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process, J. Electron. Mater. 2015, 44, 3, 771-777.
  • [11] Shemelya C.M. et al., Mechanical, electromagnetic, and X-ray shielding characterization of a 3D printable tungsten-polycarbonate polymer matrix composite for space-based applications, J. Electron. Mater. 2015, 44, 8, 2598-2607.
  • [12] Expert Tips for 3D Printing with Metal Filaments – Materials Guide. Available: https://www.simplify3d.com/support/materials-guide/metal-filled/.
  • [13] Boparai K., Singh R., Singh H., Comparison of tribological behaviour for Nylon 6-Al.- Al2O3and ABS parts fabricated by fused deposition modelling: This paper reports a low cost composite material that is more wear-resistant than conventional ABS, Virtual Phys. Prototyp. 2015, 10, 2, 59-66.
  • [14] Singh B., Kumar R., Chohan J.S., Polymer matrix composites in 3D printing: A state of art review. Materials Today: Proceedings. 2020, 33, DOI: 10.1016/j.matpr.2020.04.335.
  • [15] Bayraktar I., Doganay D., Coskun S., Kaynak C., Akca G., Unalan H.E., 3D printed antibacterial silver nanowire/polylactide nanocomposites, Compos. Part B Eng. 2019, May, 172, 671-678.
  • [16] Wijnia S. et al., 3D printing of CNT – and graphene-based conductive polymer nanocomposites by fused deposition modeling, Appl. Mater. Today 2017, 9, 21-28.
  • [17] Pundir A., Krishnan P.S.G., Nayak S.K., Effect of Nano-Calcium Carbonate Content on Properties of Poly (Lactic Acid) Nanocomposites 2017, 2-3.
  • [18] Torrado Perez A.R., Roberson D.A., Wicker R.B., Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev. 2014, Jun, 14, 3, 343-353.
  • [19] Rapacz-Kmita A., Gajek M., Dudek M., Stodolak-Zych E., Szaraniec B., Lach R., Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation, J. Thermal Anal. Calor. 2017, 127, 1, 389-398.
  • [20] Rapacz-Kmita A., Foster K., Mikołajczyk M., Gajek M., Stodolak-Zych E., Dudek M., Functionalized halloysite nanotubes as a novel efficient carrier for gentamicin, Mat. Letters 2019, 243, 13-16.
  • [21] Rapacz-Kmita A., Pierchała M.K., Tomas-Trybuś A., Szaraniec B., Karwot J., The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films, Acta Bioeng. Biomech. 2017, 19, 4, 25-33.
  • [22] NatureWorks Ingeo™ Biopolymer 3251D Technical Data Sheet.
  • [23] ISO 527-1:2019, Plastics – Determination of tensile properties – Part 1: General principles.
  • [24] ISO 527-2:2019, Plastics – Determination of tensile properties – Part 2: Test conditions for moulding and extrusion plastics.
  • [25] ISO 179-1:2010, Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test.
  • [26] Mohapatra A.K., Mohanty S., Nayak S.K., Effect of PEG on PLA/PEG blend and its nanocomposites: A study of thermomechanical and morphological characterization, Polym. Compos. 2013, 35, 2, 283-293.
  • [27] Xiao R.Z., Zeng Z.W., Zhou G.L., Wang J.J., Li F.Z., Wang A.M., Recent advances in PEG-PLA block copolymer nanoparticles, Int. J. Nanomedicine 2010, Nov, 5, 1057-1065.
  • [28] Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W., Hussein M.Z., Poly(lacticacid)/poly(ethylene glycol) polymer nanocomposites: Effects of Graphene nanoplatelets, Polymers 2014, 6, 1, 93-104.
  • [29] Coppola B., Cappetti N., di Maio L., Scarfato P., Incarnato L., Layered Silicate Reinforced Polylactic Acid Filaments for 3D Printing of Polymer Nanocomposites, Proceedings of the RTSI 2017 – IEEE 3rd International Forum on Research and Technologies for Society and Industry, Conference Proceedings, Modena, Italy 2017, September, 11-13, 3-6.
  • [30] Weng Z., Wang J., Senthil T., Wu L., Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des.2016, 102, 276-283.
  • [31] Papadopoulos L., Klonos P.A., Terzopoulou Z., Psochia E., Sanusi O.M, Hocine N.A., Benelfellah A., Giliopoulos D., Triantafyllidis K., Kyritsis A., Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings, Polymer 2021, 217, 123457.
  • [32] Coppola B., Cappetti N., Maio L.D., Scarfato P., Incarnato L., 3D printing of PLA/clay nanocomposites: influence of printing temperature on printed samples properties, Materials 2018, 11, 1947.
  • [33] Grigora M.-E., Terzopoulou Z., Tsongas K., Bikiaris D.N., Tzetzis D., Physicochemical characterization and finite element analysis-assisted mechanical behavior of polylactic acid-montmorillonite 3D printed nanocomposites, Nanomaterials 2022, 12, 2641.
  • [34] Moreno J.F., Da Silva A.L.N., Da Silva A.H.M.D.F.T., De Sousa A.M.F., Preparation and characterization of composites based on poly(lactic acid) and CaCO3 nanofiller, AIP Conf. Proc. 2015, May, 1664, 1-6.
  • [35] Shi X., Zhang G., Siligardi C., Ori G., Lazzeri A., Comparison of precipitated calcium carbonate/polylactic acid and halloysite/polylactic acid nanocomposites, J. Nanomater. 2015, 2015, 1-11.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c38a763a-5614-460d-b6f0-1153149f2043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.