Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study was designed out in the framework of evaluating the capacity of growth improvement and protection of plants against biotic and abiotic agents by plant growth-promoting rhizobacteria (PGPR). Accordingly, we evaluated the power of four bacterial isolates that were identified as B6 (Bacillus amyloliquefaciens DMB3), F31 (Acinetobacter lwoffii strain HATC14), Fr43 (Pseudomonas brassicacearum subsp. neoaurantiaca strain IHBB13645), and B29 (Bacillus amyloliquefaciens strain CD2901) in producing specific metabolites, such as siderophores, indole acetic acid (IAA), phosphatases, cellulases, hydrocyanic acid (HCN). The ratio of siderophore production reaches its maximum on the 3rd day of incubation in the four bacterial strains with yellow halo diameter values varying between 1.9 and 2.15. The production of siderophores in the liquid medium is maximal at concentrations of 1 and 20 mmol/l of Fe3+with a percentage between 70.8 and 90.64%. This declines at concentrations of 100 and 150 mmol/l in Fe3+. The catecholate and hydroxamate siderophores are produced by the three bacterial isolates (Fr43, F31, B29). While strain B6 produces only catecholate. In addition, the Carboxylate siderophore is produced only by strain Fr43. Qualitative production of indole acetic acid was observed in all isolates tested in solid and liquid media. Strains F31, Fr43, B29 and B6 produced 51.21 μg/ml, 62.8 μg/ml, 77.29 μg/ml and 83.09 μg/ml of IAA, respectively. In addition, the results show solubilization of Ca3(PO4)2 by the four strains with the presence of a clear halo with a diameter varying between 10 and 16 mm and a quantity between 30.15 μg/ml and 82.43 μg/ml. The cellulolytic activity of the four isolates Fr43, B6, F31 and B29 showed a halo that reached diameters of 28 mm, 25 mm, 23 mm and 21 mm, respectively. Furthermore, HCN production is illustrated in strains B6 and B29 alone.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
272--279
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Plant, Animal, and Agro-industrial Production Laboratory, Faculty of Sciences, Ibn Tofail University, BP133, 14000 Kenitra, Morocco
autor
- Plant, Animal, and Agro-industrial Production Laboratory, Faculty of Sciences, Ibn Tofail University, BP133, 14000 Kenitra, Morocco
autor
- Laboratory of Natural Resources and Development, Faculty of Sciences, Ibn Tofail University, BP133, 14000 Kenitra, Morocco
autor
- Plant, Animal, and Agro-industrial Production Laboratory, Faculty of Sciences, Ibn Tofail University, BP133, 14000 Kenitra, Morocco
autor
- Plant, Animal, and Agro-industrial Production Laboratory, Faculty of Sciences, Ibn Tofail University, BP133, 14000 Kenitra, Morocco
Bibliografia
- 1. Ahmad F., Ahmad I., Khan M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res.; 163: 173–181. https://doi.org/10.1016/j. micres.2006.04.001.
- 2. Adesemoye, A.O., Torbert, H.A., Kloepper, J.W. (2008). Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology, 54(10), 876–886. https://doi.org/10.1139/w08-081
- 3. Ahemad M., Mailk A. (2011). Bioaccumulaton of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with waste water. Bacteriology Journal, 2, 12–20.
- 4. Arnow L.E. (1937). Colorimetric determination of the components of 3, 4 dihidroxyphemylalanine –tyrosine mixtures. J. Biol. Chem. 118, 531–537.
- 5. Baakza A., Vala A.K., Dave B.P., Dube H.C. (2004). A comparative study of siderophore production by fungi from marine and terrestrial habitats. Journal of Experimental Marine Biology and Ecology, 311(1), 1–9. https://doi.org/10.1016/j.jembe.2003.12.028
- 6. Barazani O.Z., Friedman J. (1999). Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. Journal of Chemical Ecology, 25, 2397–2406. https://doi.org/10.1023/A:1020890311499
- 7. Briat J.F., Dubos C., Gaymard F. (2015). Iron Nutrition, Biomass Production, and Plant Product Quality. Trends Plant Sci., 20: 33–40. doi: 10.1016/j. tplants.2014.07.005
- 8. Cabaj A., Kosakowska A. (2009). Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiological Research, 164(5), 570–577. https://doi.org/10.1016/j.micres.2007.07.001
- 9. Cattelan A.J., Hartel P.G., Fuhrmann J.J. (1999). Screening for Plant Growth Promoting Rhizobacteria to Promote Early Soybean Growth. Soil Sci. Soc. Am. J. 63, 70–80. https://doi.org/10.2136/ sssaj1999.6361670x
- 10. Dodd I.C., Zinovkina N.Y., Safronova V.I., Belimov A.A. (2010). Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157, 361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
- 11. Drechsel H., Winkelmann G. (1997). Iron chelation and siderophores. In: Transition Metals in Microbial Metabolism, Winkelmann, G. and Carrano, C.J. (eds) Amsterdam: Harwood Academic. p1–49. https://doi.org/10.1201/9781003211129
- 12. Drechsel H., Stephan H., Lotz R., Haag H., Zähner H., Hantke K., Jung G. (1995). Structure elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains. Liebigs Annalen, 1995(10), 1727– 1733. https://doi.org/10.1002/jlac.1995199510243
- 13. Ganz T., Nemeth E. (2015). Iron Homeostasis in host defence and inflammation. Nat. Rev. Immunol, 15, 500–510. doi: 10.1038/nri3863.
- 14. Gravel V., Antoun H., Tweddell R.J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of índole acetic acid (IAA). Soil Biology & Biochemistry, 39(8), 1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015
- 15. Gupta A., Meyer J.M., Goel R. (2002). Development of heavy metal resistant mutants of ‘P’ solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr. Microbiol, 45, 323–327. https:// doi.org/10.1007/s00284-002-3762-1
- 16. Hassan T.U., Bano A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci. Plant Nutr., 15, 190-201. http:// dx.doi.org/10.4067/S0718-95162015005000016
- 17. Abdelhadi H., El Qryefy M., Ounine, K. (2024). Molecular Identification of Four Antifungal Bacteria from Potato (Solanum tuberosum) and Strawberry (Fragaria x ananassa) Plants and their Rhizosphere Soils. Tropical Journal of Natural Product Research, 8(7). https://doi.org/10.26538/tjnpr/v8i7.10
- 18. Kapri A., Tewari L. 2010. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology, 41(3), 787–795. https://doi.org/10.1590/S1517-83822010005000001
- 19. Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai, S.M., Azevedo J.L. (2008). Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira, 43, 521-528. https://doi.org/10.1590/S0100-204X2008000400011
- 20. Miller J.H. (1974). Experiments in molecular genetics. Second Ed. Cold Spring Harbor, New York.
- 21. Mohamed I., Eid K.E., Abbas M.H., Salem A.A., Ahmed N., Ali M., Fang C. (2019). Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety, 171, 539–548. https://doi.org/10.1016/j. ecoenv.2018.12.100
- 22. Nautiyal C.S. (1999). An efficient microbiological growth medium for screening phosphate solubilization microorganisms. FEMS Microbiol. Lett. 170, 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- 23. Neilands J.B. (1981). Microbial iron compound. Annu. Rev. Biochem. 50, 715–731. https://doi.org/10.1146/annurev.bi.50.070181.003435
- 24. Naik P.R., Sakthivel N. (2006). Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Research in Microbiology, 157(6), 538–546. https://doi.org/10.1016/j.resmic.2005.11.009
- 25. Shenker M., Oliver I., Helmann M., Hadar Y., Chen Y. (1992). Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15, 2173–2182. https://doi.org/10.1080/01904169209364466
- 26. Agrawal D.P.K., Agrawal S. (2013). Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int. J. Curr. Microbiol. App. Sci, 2(10), 406–417.
- 27. Picard C., Di Cello F., Ventura M., Fani R. Guckert A. (2000). Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66, 948–955. https://doi.org/10.1128/AEM.66.3.948-955.2000
- 28. Sajjad Mirza M., Ahmad W., Latif F., Haurat J., Bally R., Normand P., Malik K.A. (2001). Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant and Soil, 237, 47–54. https://doi.org/10.1023/A:1013388619231
- 29. Schwyn B., Neilands J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
- 30. Sudto A., Punyathiti Y., Pongsilp N. (2008). The use of agricultural wastes as substrates for cell growth and carboxymethyl cellulase (CMCASE) Production by Bacillus subtilis, Escherichia coli and Rhizobium sp. Current Applied Science and Technology, 8(2), 84–92.
- 31. Vassilev N., Medina A., Azcon R., Vassileva M. (2006). Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant and Soil, Amsterdam, 287(1-2), 77–84. https://doi.org/10.1007/s11104-006-9054-y
- 32. Verma M., Brar S.K., Tyagi R.D., Surampalli R.N., Valero J.R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/j.bej.2007.05.012
- 33. Welbaum G., Sturz AV., Dong Z., Nowak J. (2004). Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23, 175– 193. https://doi.org/10.1080/07352680490433295
- 34. Whitelaw M.A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing Fungi, in: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, Waltham, MA, 99–151. https://doi.org/10.1016/S0065-2113(08)60948-7
- 35. Xiang N., Lawrence K.S., Kloepper J.W., Donald P.A., McInroy J.A., Lawrence G.W. (2017). Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Disease, 101(5), 774–784. https://doi.org/10.1094/PDIS-09-16-1369-RE
- eir rhizosphere soils
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3851504-4648-45cd-b80d-7bfa37f90e61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.