PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical soil degradation in the area of the Głogów Copper Smelter protective forest

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Degradacja ziemi na terenach byłej strefy ochronnej Huty Miedzi Głogów
Języki publikacji
EN
Abstrakty
EN
Earth surface is under the continous influence of the environmental factors – both natural and anthropogenic. The significant impact on the environment can be noted in areas adjacent to the metal industry plants, in a consequence of pollutants emission, especially dusts containing the heavy metals, into the atmosphere,. In the surroundings of Głogów Copper Smelter (GCS) elevated amounts of copper and lead has been noted. In the soils of the test sites were found up to 5250 mg kg-1 Cu and 1290 mg kg-1Pb. The forest litter contained 3.3-5.1 more Cu and 3.9-8.6 Pb than the humic horizon of the soil. Analyse of the different soils covering the GCS protective forest area let specify the stabilising role of particle size distribution, TOC content and the soil reaction to Cu and Pb migration in the environment.
PL
Powierzchnia ziemi jest nieustannie narażona na oddziaływania o charakterze naturalnym i antropogenicznym. Znaczące oddziaływanie jest łatwo zauważalne na terenach przemysłowych. Szczególnie na obszarach objętych wydobyciem i przeróbką metali. Na terenach przyległych do Huty Miedzi Głogów stwierdzono wysoką koncentrację miedzi i ołowiu sięgającą 5250 mg・kg-1 Cu i 1290 mg・kg-1 Pb. Poziom ściółki leśnej zawierał 3,3-5,1 raza więcej Cu i 3,9-8,6 Pb niż poziom próchniczny analizowanych gleb. Analiza różnych gleb pokrywających las ochronny HMG pozwoliła wskazać na znaczącą rolę składu granulometrycznego, zawartości węgla organicznego oraz odczynu na stabilizację migracji Cu i Pb w środowisku.
Rocznik
Tom
Strony
61--71
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab.
Twórcy
autor
  • University of Zielona Gora, Institute of Environmental Engineering, Poland
autor
  • University of Zielona Gora, Institute of Environmental Engineering, Poland
autor
  • University of Zielona Gora, Institute of Environmental Engineering, Poland
  • University of Zielona Gora, Institute of Environmental Engineering, Poland
autor
  • University of Zielona Gora, Institute of Environmental Engineering, Poland
Bibliografia
  • 1. Ashman M.R., Puri G.: Essential soil science: a clear and conciseintroduction to soil science, Wiley-Blackwell 2008 pp. 208.
  • 2. Bieroński J., Pawlak W., Tomaszewski J., 2000, Commentary on hydrographic map, scale 1:50000, Arkusz M-33-21-A Głogów, (in Polish).
  • 3. Blume H.P., (Hrsg.): Handbuch des Bodenschutzes Bodenökologie und –belastung Vorbeugende und abwehrende Schutzmaβnahmen, Ecomed 2010 p. 782.
  • 4. Dunjó G., Pardini G., Gispert M., 2003: Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain, Catena, 52, 23–37.
  • 5. Dz. U. 2002 nr 165 poz. 1359 – Order of the Minister of Environment of 9. September 2002 on soil quality and earth quality standards, (in Polish).
  • 6. European Environment Agency, 2000: Down to earth: soil degradation and sustainable development in Europe. A challenge for the 21st century, Environmental issues series no. 16, Copenhagen, Denmark.
  • 7. Fen-Li Z., 2006: Effect of Vegetation Changes on Soil Erosion on the Loess Plateau, Pedosphere, 16, 4, 420-427.
  • 8. Fu B., Liu Y., Lu Y., He C., Zeng Y., Wu B., 2011: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China, Ecological Complexity, 8, 284–293.
  • 9. Fullen M.A., Brandsma R.T., 1994: Property changes by erosion of loamy sand soils in east Shropshire, UK, Soil technology, 8, 1-15.
  • 10. Geoportal, 2014. Access by http://maps.geoportal.gov.pl/.
  • 11. Greinert H., Greinert A.: Protection and remediation of soil environment (in Polish), Wydawnictwo Politechniki Zielonogórskiej, Zielona Góra 1999, 51-75.
  • 12. Guidelines for soil description. 2006. 4rd Edition, FAO, Rome. 98 pp. 109.
  • 13. Gzyl J., 1999: Soil protection in Central and Eastern Europe, Journal of Geochemical Exploration 66, 333–337.
  • 14. Kaniecki A., Baczyńska A., Gogołek A., 2005: Komentarz do mapy hydrograficznej w skali 1:50000, Arkusz M-33-8-C Nowa Sól.
  • 15. Karczewska A., Spiak Z., Kabała C., Gałka B., Szopka K., Jezierski P., Kocan K., 2008: Possibility of using methods of assisted phytoextraction for remediation of soils contaminated by copper smelting emissions (in Polish), Wydawnictwo Zante, Wrocław.
  • 16. Kabata-Pendias A., Pendias H., 1999: Biogeochemistry of trace elements, PWN, Warszawa, p. 400.
  • 17. KGHM, 2014. Internet site of KGHM Polska Miedź S.A. Available at http://www.kghm.com/.
  • 18. Leśniczak A., 2005: Forest management plan for the protective zone of Głogów copper smelter from 01.01.2005 to 31.12.2014 r. Volume 1. The general part of the plan - elaboration of nature protection program (in Polish), Brzeg pp. 44.
  • 19. Lis J., Pasieczna A., 2005: Anthropogenic soils pollution within the Legnica–Głogów copper district, Polish Geological Institute Special Papers, 17 (2005), p. 42–48.
  • 20. Luo X., Yu S., Zhu Y., Li X., 2012: Trace metal contamination in urban soils of China, Science of the Total Environment, 421/422, 17–30.
  • 21. Marques J.J., Schulze D.G., Curi N., Mertzman S.A., 2003: Trace element geochemistry in Brazilian Cerrado soils, Geoderma, 121, 31–43.
  • 22. Medyńska-Juraszek A., Kabała C. 2012: Heavy metal pollution of forest soils affected by the copper industry, J. Elem. 17 (3), 441-451, DOI 10.5601/jelem.2012.17.3.07.
  • 23. Mengel K., Kirkby E.A., Kosegarten H., Appel T., 2001: Princeples of plant nutrition, Kluwer, Netherlands, p. 864.
  • 24. Ming H., Hea W.X., Lamb D.T. ,b, Megharaj M., Naidu R., 2012: Bioavailability of lead in contaminated soil depends on the nature of bioreceptor, Ecotoxicology and Environmental Safety 78, 344–350.
  • 25. Montanarella L., 2007: Trends in land degradation in Europe, in: SivaKumar M.V.K., Ndiang'Ui N. (red.): Climate and Land Degradation, Springer, 84-86.
  • 26. Rosada J., Grzesiak J., 2009: Distribution of copper, lead and zinc forms in solid phase of soil influenced by emission of copper smelter "Głogów", Progress in Plant Protection/Postępy w Ochronie Roślin, 49 (3), 1155 – 1158.
  • 27. Shrestha R.P., Schmidt-Vogt D., Gnanavelrajah N., 2010: Relating plant diversity to biomass and soil erosion in a cultivated landscape of the eastern seaboard region of Thailand, Applied Geography, 30, 606–617.
  • 28. Singer M.J., Munns D.N.: Soils an introduction, New York, Macmillan Publishing Company 1987 pp. 492.
  • 29. Szerszeń L., Karczewska A., Roszyk E., Chodak T., 1991: Distribution of Cu, Pb and Zn in soil profiles adjacent to the copper smelters (in Polish), Roczniki Gleboznawcze, 42, 3/4, 199–206.
  • 30. Szerszeń E., Chodak T., Kabała C., 2004: Zmiany zawartości miedzi, ołowiu i cynku w glebach w rejonie hut miedzi Głogów i Legnica w latach 1972-2002, Roczniki Gleboznawcze, 55, 3, 195-205.
  • 31. Traxelektronik, 2012, Access by http://www.traxelektronik.pl (in Polish).
  • 32. Vega F.A., Covelo E.F., Andrade M.L., Marcet P., 2004: Relationships between heavy metals content and soil properties in minesoils, Analytica Chimica Acta, 524, 141–150.
  • 33. Vrščaj B., Poggio L., Marsan F.A., 2008: A method for soil environmental quality evaluation for management and planning in urban areas, Landscape and Urban Planning, 88, 81–94.
  • 34. Wilkinson A.G., 1999: Poplars and willows for soil erosion control in New Zealand, Biomass and Bioenergy, 16, 263–274.
  • 35. Zhan B., Yang Y.S., Zepp H., 2004: Effect of vegetation restoration on soil and watererosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China, Catena, 57, 1, 77–90.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3828267-811c-4e58-bf12-c79957c85210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.