PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Altitude versus vegetation as the factors influencing the diversity and abundance of earthworms and other soil macrofauna in montane habitat (Silesian Beskid Mts, Western Carpatians)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The search for global regularities governing the biodiversity of living organisms has a long history, and altitudinal gradients have explanatory power. To determine whether soil animals exhibit altitudinal gradients of abundance and diversity and to assess the impact of plant communities (meadows and forests) on any observed patterns, we studied soil invertebrates along an altitudinal gradient of 500–1000 m a.s.l. in the Silesian Beskid Mts (Western Carpathians). Ten study plots were established in three vegetation zones in meadows and also forested sites (spruce, beech, oak-hornbeam, riparian). In spring, summer and autumn of 2004, 2005 and 2006, five soil samples (20 x 20 x 25 cm) were dug from every study plot on each occasion and invertebrates were separated from the soil by hand-sorting . Earthworms were identified to species, and other invertebrates to higher taxa. The two types of plant associations studied (meadow, forest) differed significantly in the population density and biomass of soil invertebrates – earthworms were more numerous in meadows (132.3 ind. m-2 in meadows and 24 ind. m-2 in forests) and other invertebrates in forests (57.7 ind. m-2 in meadows and 67.4 ind. m-2 in forests). Density tended to be higher in summer than in other seasons, and at minimum in autumn. Meadows of foothills and the lower montane zone were richest in earthworm species (7 species). Upper montane meadow, upper montane spruce forest and lower montane beech forest were poorest in earthworms (2 species).The most abundant animals among other invertebrates were larvae of Coleoptera and Diptera. Coleoptera larvae dominated at higher altitudes. The density and biomass of earthworms in meadows correlated negatively with elevation (density, r = -0.52, biomass r = -0.66). The corresponding correlations for other invertebrates were much weaker (density, r=-0.32; biomass, r = -0.31). The diversity of earthworms tended to decrease with altitude in meadows. Sites at higher elevations were poorer in species of both earthworms and other invertebrates. For both earthworms and other invertebrates in spruce forest there were no differences in biodiversity indices along the altitudinal gradient.
Rocznik
Strony
145--156
Opis fizyczny
Bibliogr. 50 poz., il.
Twórcy
autor
  • Department of Ecosystem Studies, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
  • Association for Nature “Wolf ”, Twardorzeczka 229, 34-324 Lipowa, Poland
autor
  • Department of Ecosystem Studies, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
Bibliografia
  • 1. Almeida-Neto M., Machado G., Pintoda-Rocha R., Giaretta A.A. 2006 – Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport’s rule? – J. Biogeogr. 33: 361–375.
  • 2. Ashton S., Gutiérrez D., Wilson R.J. 2009 Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change Ecol. Entomol. 34: 437–446.
  • 3. Aubry S., Magnin F., Bonnet V., Preece R.C. 2005 – Multi-scale altitudinal patterns in species richness of land snail communities in south-eastern France – J. Biogeogr. 32: 985–998.
  • 4. Chatzaki M., Lymberakis P., Markakis M., Mylonas G. 2005 – The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range – J. Biogeogr. 32: 813–831.
  • 5. Coleman D.C., Crossley D.A., Hendrix P.F. 2004 – Fundamentals of Soil Ecology – Elsevier, Amsterdam, Boston. 386 pp.
  • 6. Edwards C.A., Bohlen P.J. 1996 – Biology and Ecology of Earthworms – Chapman and Hall, New York, 426 pp.
  • 7. Gaston K.J. 2000 – Global patterns in diversity Nature, 405: 220–227.
  • 8. Gaston K.J., Blackburn T.M., Spicer J.I. 1998 – Rapport’s rule: time for an epitaph? – TREE, 13: 70–74.
  • 9. Gonzalez G., Garcıa E., Cruz V., Borges S., Zalamea M., Rivera M.M. 2007 – Earthworm communities along an elevation gradient in Northeastern Puerto Rico – Eur. J. Soil Biol. 43: S24–S32.
  • 10. Granval Ph., Muys B. 1995 – Predation on earthworms by terrestrial vertebrates – International Union of Game Biologists – Proceedings of the XXII Congress “The game and the man”, Sofia, pp. 480–491.
  • 11. Guil N., Hortal J., Sanchez-Moreno S., Machordom A. 2009 – Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment – Landscape Ecol. 24: 375–390.
  • 12. Hess M. 1965 – Climatic altitudinal zones in Polish Western Carpathians – Zeszyty Naukowe Uniwersytetu Jagiellońskiego nr 115. Prace Geograficzne, 11: 1–267 (in Polish).
  • 13. Holmstrup M., Overgaard J. 2007 – Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland – Cryobiology, 55: 80–86.
  • 14. Illig J., Norton R.A., Scheu S., Maraun M. 2010 – Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest – Exp. Appl. Acarol. 52: 49–62.
  • 15. Kasprzak K. 1979 – Oligochaetes of the Pieniny Mountains. III. Earthworms (Lumbricidae) – Fragm. Faunistica, 24: 81–95 (in Polish).
  • 16. Kasprzak K. 1986 – Soil Oligochaeta. III. Family Lumbricidae.Keys for the Identification of Polish Invertebrates – PWN, Warszawa (in Polish).
  • 17. Kostecka J., Skoczeń S. 1993 – Earthworm (Oligochaeta: Lumbricidae) populations in four types of beech wood Fagetum carpaticumin the Bieszczady National Park (south-eastern Poland). Part I. Species composition, diversity, dominance, frequency and associations – Acta Zool. Cracov. 36: 1–13.
  • 18. Körner C. 2007 – The use of ‘altitude’ in ecological research – TREE, 22: 569–574.
  • 19. Lawton J.H., MacGarvin M., Heads P.A. 1987 – Effects of altitude on the abundance and species richness of insect herbivores on bracken – J. Anim. Ecol. 56: 147–160.
  • 20. Lee K.E. 1985 – Earthworms, their ecology and relationships with soil and land use – Academic Press, Sydney, 411 pp.
  • 21. Lepš J., Šmilauer P. 2003 – Multivariate analysis of ecological data using CANOCO – Cambridge University Press, Cambridge.
  • 22. Lessard J-P., Sackett T.E., Reynolds W.N., Fowler D.A., Sanders N.J. 2011 Determinants of the detrital arthropod community structure: the effects of temperature and resources along an environmental gradient – Oikos, 320: 333–343.
  • 23. Lomolino M.V. 2001 – Elevation gradients of species-density: historical and prospective views – Global Ecol. Biogeogr.10: 3–13.
  • 24. Moritz C., Patton J.L., Conroy C.J., Parra J.L., White G.C., Beissinger S.R. 2008 – Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA – Science, 322: 261–264.
  • 25. Mysłajek R.W., Nowak S., Rożen A., Jędrzejewska B. 2013 – Diet composition of Eurasian badgers (Meles meles) along altitudinal gradient in the Western Carpathians, compared to other European mountains and lowlands – Anim. Biol . (in press).
  • 26. Nogués-Bravo D., Araújo M.B., Romdal T., Rahbek C. 2008 – Scale effects and human impact on the elevational species richness gradients – Nature, 453: 216–219.
  • 27. Nowak E. 1975 – Population density of earthworms and some elements of their production in several grassland environments – Ekol. Pol. 23: 459–492.
  • 28. Nufio C.R., McGuire C.R., Bowers M.D., Guralnick R.P. 2010 – Grasshopper community response to climatic change: variation along an elevational gradient – PLoS ONE 5: e12977. doi:10.1371/journal.pone.0012977
  • 29. Plisko J.D. 1971 – Earthworms (Oligochaeta, Lumbricidae) of the Bieszczady Mountains – Fragm. Faun. 17: 31–48 (in Polish).
  • 30. Plisko J.D. 1973 – Lumbricidae – earthworms (Annelida: Oligochaeta) – Fauna of Poland 1, PWN, Warszawa, 156 pp. (in Polish).
  • 31. Pop V.V. 1997 – Earthworm-vegetation-soil relationships in the Romanian Carpathians – Soil Biol. Biochem. 29: 223–229.
  • 32. Pop A.A., Pop V.V., Csuzdi C. 2010 – Significance of the Apuseni Mountains (the Carpathians) in the origin and distribution of Central European earthworm fauna (Oligochaeta: Lumbricidae) – Zool. Middle East Suppl. 2: 89–110.
  • 33. Rahbek C. 1995 – The elevational gradient of species richness: a uniform pattern? –Ecography, 18: 200–205.
  • 34. Rahbek C. 2005 – The role of spatial scale and the perception of large-scale species richness patterns – Ecol. Lett. 8: 224–239.
  • 35. Richardson B.A., Richardson M.J., Soto-Adames F.N. 2005 – Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico – J. Anim. Ecol. 74: 926–936.
  • 36. Rożen A. 1982 – The annual cycle in populations of earthworms (Lumbricidae, Oligochaeta) in three types of oak-hornbeam of the Niepolomicka Forest I. Species composition, dominance, frequency and associations – Pedobiologia, 23:199–208.
  • 37. Sanders N.J. 2002 – Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule – Ecography, 25: 25–32.
  • 38. Sanders N.J., Moss J., Wagner D. 2003 – Patterns of ant species richness along elevational gradients in an arid ecosystem – Global Ecol. Biogeogr.12: 93–102.
  • 39. Sanders N.J., Rahbek C. 2012 – The patterns and causes of elevational diversity gradients – Ecography, 35: 1–3.
  • 40. Satchell J.E. 1971 – Earthworms (In: Methods of Study in Quantitative Soil Ecology: population, production and energy flow, Ed. J. Phillipson) – Blackwell Scientific Publications, Oxford, Edinburgh, pp.107–127.
  • 41. Sfenthourakis S., Anastasiou I., Strutenschi T. 2005 – Altitudinal terrestrial isopod diversity – Eur. J. Soil Biol. 41: 91–98.
  • 42. Sokal R.R., Rohlf F.J. 1981 – Biometry – W.H. Freeman and Company, San Francisco
  • 43. Southwood T.R.E. 1978 – Ecological Methods Chapman and Hall, London, pp. 524.
  • 44. Stat Soft Inc. 2010 – STATISTICA (data analysis software system), version 9 – www.statsoft.com.
  • 45. Stevens G.C. 1989 – The latitudinal gradient in geographical range: how so many species coexist in the tropics – Am. Nat. 133: 240–256.
  • 46. Ter Braak C.J.F., Šmilauer P. 2002 – CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5) – Microcomputer Power, Ithaca, NY.
  • 47. Wang S., Ruan H., Wang B. 2009 – Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains – Soil Biol. Biochem. 41: 891–897.
  • 48. Wendorff A., Brzezińska E. 1980 – Numbers, biomass and vertical distribution of earthworms of the pastures in regions of Kraków and Jaworki – Acta Agr. Silv. 19: 209–216.
  • 49. Willig M.R., Presley S.J., Bloch C.P., Castro-Arellano I., Cisneros L.M., Higgins C.L., Klingbeil B.T. 2011 Tropical metacommunities along elevational gradients: effects of forest type and other environmental factors – Oikos, 120: 1497–1508.
  • 50. Zajonc I. 1979 – Earthworms (Lumbricidae) in meadow associations of 3 regions of the West Carpathians – Biologia, 34: 133–142.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c37f4903-471e-48d4-92f8-ff34d4674427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.