PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although growing evidences suggest heartbeat evoked potential (HEP) as a biomarker of interoception, little is known about how HEP is related to cardiovascular function. In the article, mental arithmetic and meditation tasks that respectively activate sympathetic and parasympathetic activities were designed, and electroencephalogram and cardiovascular parameters were recorded in healthy young males. Our findings revealed a decrease in HEP during mental arithmetic and an increase during meditation. A correlation between HEP and blood pressure was also observed, indicating that baroreceptor stretch may contribute to HEP generation. Furthermore, HEP showed a positive correlation with parasympathetic activity and a negative correlation with sympathetic activity. Collectively, these results suggest the presence of a potential negative feedback loop between the brain and heart, mediated by HEP.
Twórcy
  • Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
autor
  • Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
autor
  • Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
autor
  • Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
  • Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
Bibliografia
  • [1] Costagliola G, Orsini A, Coll M, Brugada R, Parisi P, Striano P. The brain-heart interaction in epilepsy: implications for diagnosis, therapy, and SUDEP prevention. Ann Clin Transl Neurol 2021;8:1557-68.
  • [2] Conen D, Rodondi N, Müller A, Beer JH, Ammann P, Moschovitis G, et al. Relationships of Overt and Silent Brain Lesions With Cognitive Function in Patients With Atrial Fibrillation. J Am Coll Cardiol 2019;73:989-99.
  • [3] Faes L, Marinazzo D, Stramaglia S, Jurysta F, Porta A, Giandomenico N. Predictability decomposition detects the impairment of brain-heart dynamical networks during sleep disorders and their recovery with treatment. Philos Trans R Soc A Math Phys Eng Sci 2016;374:1-17.
  • [4] Catrambone V, Talebi A, Barbieri R, Valenza G. Time-Resolved Brain-to-Heart Probabilistic Information Transfer Estimation Using Inhomogeneous Point-Process Models. IEEE Trans Biomed Eng 2021;68:3366-74.
  • [5] Antonacci Y, Barà C, Zaccaro A, Ferri F, Pernice R, Faes L. Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions. Front Network Physiol 2023;3:1-15.
  • [6] Barà C, Zaccaro A, Antonacci Y, Dalla Riva M, Busacca A, Ferri F, et al. Local and global measures of information storage for the assessment of heartbeat-evoked cortical responses. Biomed Signal Process Control 2023;86:1-13.
  • [7] Candia-Rivera D, Chavez M, De Vico FF. Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Network Neurosci 2024;8:557-75.
  • [8] Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014;5: 1-19.
  • [9] Ardell JL. Armour JA. Neurocardiology: Structure-Based Function. Comprehensive Physiology; 2016. p. 1635-53.
  • [10] Tahsili-Fahadan P, Geocadin RG. Heart-Brain Axis. Circ Res 2017;120:559-72.
  • [11] Hsueh B, Chen R, Jo Y, Tang D, Raffiee M, Kim YS, et al. Cardiogenic control of affective behavioural state. Nature 2023;615:292-9.
  • [12] Schandry R, Sparrer B, R w.. From the heart to the brain: a study of heartbeat contingent scalp potentials. Int J Neurosci 1986;30:261-75.
  • [13] Coll MP, Hobson H, Bird G, Murphy J. Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception. Neurosci Biobehav Rev 2021;122:190-200.
  • [14] Pang J, Tang X, Li H, Hu Q, Cui H, Zhang L, et al. Altered Interoceptive Processing in Generalized Anxiety Disorder-A Heartbeat-Evoked Potential Research. Front Psych 2019;10:616.
  • [15] Judah MR, Shurkova EY, Hager NM, White EJ, Taylor DL, Grant DM. The relationship between social anxiety and heartbeat evoked potential amplitude. Biol Psychol 2018;139:1-7.
  • [16] Kumral D, Al E, Cesnaite E, Kornej J, Sander C, Hensch T, et al. Attenuation of the Heartbeat-Evoked Potential in Patients With Atrial Fibrillation. JACC: Clinical Electrophysiology 2022;8:1219-30.
  • [17] Zhou H, Zou H, Dai Z, Zhao S, Hua L, Xia Y, et al. Interoception Dysfunction Contributes to the Negative Emotional Bias in Major Depressive Disorder. Front Psych 2022;13:874859.
  • [18] Rapp L, Mai-Lippold SA, Georgiou E, Pollatos O. Elevated EEG heartbeat-evoked potentials in adolescents with more ADHD symptoms. Biol Psychol 2023;184: 108698.
  • [19] Zaccaro A, Perrucci MG, Parrotta E, Costantini M, Ferri F. Brain-heart interactions are modulated across the respiratory cycle via interoceptive attention. Neuroimage 2022;262:1-15.
  • [20] Zaccaro A, della Penna F, Mussini E, Parrotta E, Perrucci MG, Costantini M, et al. Attention to cardiac sensations enhances the heartbeat-evoked potential during exhalation. IScience 2024;27:1-19.
  • [21] Ren Q, Marshall AC, Kaiser J, Schutz-Bosbach S. Multisensory integration of anticipated cardiac signals with visual targets affects their detection among multiple visual stimuli. Neuroimage 2022;262:119549.
  • [22] Kritzman L, Eidelman-Rothman M, Keil A, Freche D, Sheppes G, Levit-Binnun N. Steady-state visual evoked potentials differentiate between internally and externally directed attention. Neuroimage 2022;254:119133.
  • [23] Marshall AC, Gentsch-Ebrahimzadeh A, Schutz-Bosbach S. From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing. Neuroimage 2022;251:119011.
  • [24] Poppa T, Benschop L, Horczak P, Vanderhasselt MA, Carrette E, Bechara A, et al. Auricular transcutaneous vagus nerve stimulation modulates the heart-evoked potential. Brain Stimul 2022;15:260-9.
  • [25] Huang C, Gevirtz RN, Onton J, Criado JR. Investigation of vagal afferent functioning using the Heartbeat Event Related Potential. Int J Psychophysiol 2018; 131:113-23.
  • [26] Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart 2011;97:698-708.
  • [27] Xie L, Liu B, Wang X, Mei M, Li M, Yu X, et al. Effects of different stresses on cardiac autonomic control and cardiovascular coupling. J Appl Physiol 2017;122:435-45.
  • [28] Bortolla R, Galli M, Spada GE, Maffei C. Mindfulness Effects on Mind Wandering and Autonomic Balance. Appl Psychophysiol Biofeedback 2022;47:53-64.
  • [29] Tang YY, Ma Y, Fan Y, Feng H, Wang J, Feng S, et al. Central and autonomic nervous system interactionis altered by short-term meditation. PNAS 2009;106: 8865-70.
  • [30] Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci Biobehav Rev 2016;64:288-310.
  • [31] Watanabe DK, Jarczok MN, Williams DP, Koenig J, Thayer JF. Evaluation of low vagally-mediated heart rate variability as an early marker of depression risk. J Affect Disord 2024;365:146-54.
  • [32] Hassanpour MS, Simmons WK, Feinstein JS, Luo Q, Lapidus RC, Bodurka J, et al. The Insular Cortex Dynamically Maps Changes in Cardiorespiratory Interoception. Neuropsychopharmacology 2018;43:426-34.
  • [33] Boylan MR, Kelly MN, Thigpen NN, Keil A. Attention to a threat-related feature does not interfere with concurrent attentive feature selection. Psychophysiology 2019;56:1-11.
  • [34] Catai AM, Pastre CM, Godoy MF, Silva ED, Takahashi ACM, Vanderlei LCM. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther 2020;24:91-102.
  • [35] Gao J, Sun R, Leung HK, Roberts A, Wu BWY, Tsang EW, et al. Increased neurocardiological interplay after mindfulness meditation: a brain oscillation-based approach. Front Hum Neurosci 2023;17:1-9.
  • [36] Tang YY, Holzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat Rev Neurosci 2015;16:213-25.
  • [37] Ward LM, Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S. Independent EEG Sources Are Dipolar. PLoS One 2012;7:1-14.
  • [38] Pan J, Wj. t. A_Real-Time_QRS_Detection_Algorithm. IEEE Trans Biomed Eng 1985;32:230-6.
  • [39] Gray MA, Taggart P, Sutton PM, Groves D, Holdright DR, Bradbury D, et al. A cortical potential reflecting cardiac function. PNAS 2007;104(16):6818-23.
  • [40] Schandry R, P m.. Event-related brain potentials and the processing of cardiac activity. Biol Psychol 1996;42:75-85.
  • [41] Dirlich G, Vogl L, Plaschke M, F. s.. Cardiac field effects on the EEG. Clin Neurophysiol 1997;102:307-15.
  • [42] Dirlich G, Dietl T, Vogl L, F s.. Topography and morphology of heart action-related EEG potentials. Electroencephalogr Clin Neurophysiol 1998;108:299-305.
  • [43] Li B, Dong M, Vai M. On an automatic delineator for arterial blood pressure waveforms. Biomed Signal Process Control 2010;5:76-81
  • [44] Noto T, Zhou G, Schuele S, Templer J, Zelano C. Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox. Chem Senses 2018;43:583-97.
  • [45] Robbe HW, Mulder LJ, Rüddel H, Langewitz WA, Veldman JB, G. m.. Assessment of Baroreceptor Reflex Sensitivity by Means of Spectral Analysis. Hypertension 1987; 10:538-43.
  • [46] McCraty R, Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Global Advances In Health and Medicine 2015;4:46-61.
  • [47] Liu B, Yan S, Wang X, Xie L, Tong J, Zhao F, et al. An improved method to evaluate heart rate variability based on time-variant cardiorespiratory relation. J Appl Physiol 2019;127:320-7.
  • [48] Groppe DM, Urbach TP, M k.. Mass univariate analysis of event-related brain potentials fields I A critical tutorial. Psychophysiology 2011;48:1711-25.
  • [49] Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 2007;164:177-90.
  • [50] Wang X, Liu B, Xie L, Yu X, Li M, Zhang J. Cerebral and neural regulation of cardiovascular activity during mental stress. Biomed Eng Online 2016;15:335-47.
  • [51] Murata T, Takahashi T, Hamada T, Omori M, Kosaka H, Yoshida H, et al. Individual trait anxiety levels characterizing the properties of zen meditation. Neuropsychobiology 2004;50:189-94.
  • [52] Levine GN, Lange RA, Bairey-Merz CN, Davidson RJ, Jamerson K, Mehta PK, et al. Meditation and Cardiovascular Risk Reduction: A Scientific Statement From the American Heart Association. J Am Heart Assoc 2017;6.
  • [53] McCraty R, Atkinson M, Tomasino D, Bradley RT. The coherent heart: heart-brain interactions, psychophysiological coherence, and the emergence of systemwide order. Integral Review 2009;5:10-115.
  • [54] Weng HY, Feldman JL, Leggio L, Napadow V, Park J, Price CJ. Interventions and Manipulations of Interoception. Trends Neurosci 2021;44:52-62.
  • [55] Leganes-Fonteneau M, Bates ME, Muzumdar N, Pawlak A, Islam S, Vaschillo E, et al. Cardiovascular mechanisms of interoceptive awareness: Effects of resonance breathing. Int J Psychophysiol 2021;169:71-87.
  • [56] Ventura-Bort C, Weymar M. Transcutaneous auricular vagus nerve stimulation modulates the processing of interoceptive prediction error signals and their role in allostatic regulation. Hum Brain Mapp 2024;45:1-14.
  • [57] Berntson GG, Khalsa SS. Neural Circuits of Interoception. Trends Neurosci 2021;44: 17-28.
  • [58] Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, et al. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends Neurosci 2021;44:3-16.
  • [59] Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024;156:190-200.
  • [60] Hilz MJ, Dütsch M, Perrine K, Nelson PK, Rauhut U, Devinsky O. Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol 2001; 49:575-84.
  • [61] Guo CC, Sturm VE, Zhou J, Gennatas ED, Trujillo AJ, Hua AY, et al. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. PNAS 2016;113:2430-9.
  • [62] Park HD, Blanke O. Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, and methodological considerations. Neuroimage 2019;197: 502-11.
  • [63] Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023;26:1670-84.
  • [64] Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024;383:1-12.
  • [65] Leopold C, R s.. The heartbeat-evoked brain potential in patients suffering from diabetic neuropathy and in healthy control persons. Clin Neurophysiol 2001;112: 674-82.
  • [66] MacKinnon S, Gevirtz R, McCraty R, Brown M. Utilizing heartbeat evoked potentials to identify cardiac regulation of vagal afferents during emotion and resonant breathing. Appl Psychophysiol Biofeedback 2013;38:241-55.
  • [67] Schulz A, Koster S, Beutel ME, Schachinger H, Vogele C, Rost S, et al. Altered patterns of heartbeat-evoked potentials in depersonalization/derealization disorder: neurophysiological evidence for impaired cortical representation of bodily signals. Psychosom Med 2015;77:506-16.
  • [68] Legaz A, Yoris A, Sedeno L, Abrevaya S, Martorell M, Alifano F, et al. Heart-brain interactions during social and cognitive stress in hypertensive disease: A multidimensional approach. Eur J Neurosci 2020;55:2836-50.
  • [69] Cui S, Nakano T. Interoceptive Brain Processing Influences Moral Decision Making. Hum Brain Mapp 2024;45:1-11.
  • [70] Giusti G, Zelič Ž, Callara AL, Sebastiani L, Santarcangelo EL. Interoception as a function of hypnotizability during rest and a heartbeat counting task. Psychophysiology 2024;61:1-13.
  • [71] Ren Q, Marshall AC, Liu J, Schütz-Bosbach S. Listen to your heart: Trade-off between cardiac interoceptive processing and visual exteroceptive processing. Neuroimage 2024;299:1-16.
  • [72] Buot A, Azzalini D, Chaumon M, Tallon-Baudry C. Does stroke volume influence heartbeat evoked responses? Biol Psychol 2021;165:1-11.
  • [73] Liu H, Liang H, Yu X, Wang G, Han Y, Yan M, et al. Enhanced external counterpulsation modulates the heartbeat evoked potential. Front Physiol 2023;14: 1-12.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c37f0477-d8be-49ef-9577-928215da0943
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.