PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

First-order and second-order breakage rate of coarse particles in ball mill grinding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been observed by many authors that the breakage rates of coarse particles in a ball mill slow down with increasing grinding time and deviate from the first order. In this paper it is intended to find out whether the breakage rates of coarse particles obey second-order kinetics or not. For this purpose, quartz, limestone, iron ore and a mixture of quartz/limestone (weight ratio of 1:1) were selected as a ball mill feed. The first-order breakage rate was determined for the four particle sizes of quartz, limestone, iron ore and the mixture of quartz/limestone. Results indicating good first-order kinetics were obtained with the fine-sized particles (-1.2+1 mm, -0.6+0.42 mm). However, the coarse-sized particles (-5+4 mm, -3.15+2.5 mm) showed deviations from the first order. These coarse particles were in the abnormal breakage region. The second-order breakage rate was determined for the coarse particles (-5+4 mm, -3.15+2.5 mm). It can be seen that, for both sizes and all the materials, the second-order plot had better fit than the first-order plot. Also, it can be concluded that the second-order kinetics could model the breakage of coarse particles better than the first-order kinetics, and the validity of the second-order breakage rate was increased with increasing particle size. However, it is suggested to examine the validity of the second-order breakage rate kinetics for other materials and particle sizes.
Słowa kluczowe
Rocznik
Strony
268--278
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Mining Engineering, Lorestan University, Khorramabad, Iran
autor
  • Department of Mining Engineering, Lorestan University, Khorramabad, Iran
Bibliografia
  • AUSTIN, L.G., 1971. Introduction to the mathematical description of grinding as a rate process. Review Article, Powder Technology, 5(1), pp. 1-17.
  • AUSTIN, L.G., BHATIA, V.K., 1972. Experimental methods for grinding studies in laboratory mills. Powder Technology, 5(5), pp. 261-266.
  • AUSTIN, L.G., TRIMARCHI, T., WEYMONT, N.P., 1977. An analysis of some cases of non-first-order breakage bates. Powder Technology, 17, pp. 109 – 113.
  • AUSTIN, L.G. BAGGA, P., 1981. An analysis of fine dry grinding in ball mills, Powder Technology, 28, pp.83–90.
  • AUSTIN, L.G., SHOJI, K., BELL, D., 1982. Rate equations for non-linear breakage in mills due to material effects. Powder Technology, 31, pp. 127–133.
  • AUSTIN, L.G., JULIANELLI, K., SCHNEIDER, C.L., 2006. Simulation of wet ball milling of iron ore at Carajas, Brazil, International Journal of Mineral Processing, 84, pp.157-171.
  • CHO, H., WATERS, M.A., HOGG, R., 1996. Investigation of the grind limit in stirred media milling. International Journal of Mineral Processing, 44, pp. 607–615.
  • FUERSTENAU, D.W., DE, A., KAPUR, P.C., 2004. Linear and nonlinear particle breakage processes in comminution systems, International Journal of Mineral Processing, 74, pp.317–327.
  • GAO, M.W., FORSSBERG, E., 1993. A study on the effect of parameters in stirred ball milling. International Journal of Mineral Processing, 37, pp. 45–59.
  • GARDNER, R.P., ROGERS, R.S., 1975. A two-component mechanistic approach for the comminution of material that exhibits heterogeneous breakage characteristics. Powder Technology, 12(3), pp. 247-258.
  • GAWENDA, T., 2013. The influence of rock raw materials comminution in various crushers and crushing stages on the quality of mineral aggregates. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 26(1), pp. 53-65.
  • LOVEDAY, B.K., 1967. Journal of the South African Institute of Mining and Metallurgy, 68. 111.
  • MANKOSA, M.J., ADEL, G.T., YOON, R.H., 1989. Effect of operating parameters in stirred ball mill grinding of coal. Powder Technology, 59, pp. 255–260.
  • SARAMAK, D., 2013. Mathematical models of particle size distribution in simulation analysis of high-pressure grinding roll operations. Physicochemical Problems of Mineral Processing, 49(1), pp. 121-131.
  • TAVARES, L.M., KING, R.P., 1998. Single-particle fracture under impact loading. International Journal of Mineral Processing. 54 (1), pp.1–28.
  • TAVARES, L.M., 2007. Breakage of single particles: quasi-static. Handbook of Powder Technology, 12, pp. 3-68.
  • TAVARES, L.M., CARVALHO, R.M., 2009. Modeling breakage rates of coarse particles in ball mills. Minerals Engineering, 22, pp.650–659.
  • TUMIDAJSKI, T., KASINSKA-PILUT, E., GAWENDA, T., 2010. Investigation of grinding process energy consumption and grind ability of lithological components of polish copper ores. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 2010, 26(1), pp. 61-72.
  • TUZUN, M.A., LOVEDAY, B.K., HINDE, A.L., 1995. Effect of pin tip velocity, ball density and ball size on grinding kinetics in a stirred ball mill. International Journal of Mineral Processing, 43, pp. 179–191.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą nauki
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c37bbc1f-6044-4dd2-a9f3-65592a20b325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.