PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of high timing resolution pulse synthesis based on virtual sampling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adjustable-width pulse signals are widely used in systems such as test equipment for hold time, response time and radar testing. In this study, we proposed a pulse generation method based on virtual sampling with ultra-high pulse width resolution. In the proposed method, the sampling rate of a digital-to-analogue converter (DAC) was adjusted to considerably improve pulse width resolution. First, the sampling rate was matched with the target pulse width resolution to digitally sample the ideal signal and generate digital waveform sampling points. Next, the signal bandwidth of the DAC was matched using a low-pass digital filter. Finally, the waveform sampling points were downsampled using an integer factor and output after digital-to-analogue conversion. The waveform pulse width information generated by high-frequency digital sampling was passed step by step and retained in the final output analogue signal. A DAC with a sampling rate of 1.25 GSa/s was used, and the pulse width resolution of the pulse signal was 0.1 ns. Theoretically, a sampling rate of 10 GSa/s is required to achieve 0.1 ns resolution. This method is simple, has a low cost, and exhibits excellent performance.
Rocznik
Strony
373--389
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
Bibliografia
  • [1] del Mar Correa, M. & Perez, F. R. (2018). A Time-Domain Pulse Amplitude and Width Discrimination Method tor Photon Counting. Metrology and Measurement Systems, 25(2), 269-282. https://doi.org/10.24425/119557
  • [2] Sun, J. (2012). Pulse-width modulation. In F. Vasca, & L. Iannelli (Eds.). Dynamics and Control of Switched Electronic Systems (pp. 25-61). Springer, https://doi.org/10.1007/978-1-4471-2885-4_2
  • [3] Vedral, J., & Fexa, P. (2012). Dac Testing Using Impulse Signals. Metrology and Measurement Systems, 19(1), 105-114. https://doi.org/10.2478/v10178-012-0009-8
  • [4] Jin, X., & Tan, J. (2004). Implementation and Performance of DDS-Based General Radar Waveform Generator. Radar Science and Technology, 2(3), 183-187. (in Chinese)
  • [5] Yu, Y., Hong, W., Jiang. Z. H., Zhang, H., & Guo, C. (2019). Multibeam Generation and Measurement of a DDS-Based Digital Beamforming Array Transmitter at Ka-Band. IEEE Transactions on Antennas and Propagation, 67(5), 3030-3039. https://doi.org/10.1109/TAP.2019.2896733
  • [6] Adad, W. F., & luzzolino, R. J. (2012, July). Arbitrary function generator using direct digital synthesis. In 2012 Conference on Precision electromagnetic Measurements (pp. 622-623). IEEE. https://doi.org/10.1109/CPEM.2012.6251083
  • [7] Vankka, J., & Halonen, K. (2001). Direct Digital Synthesizers: Theory, Design and Applications. Springer Science & Business Media.
  • [8] Bowler, R., Warring, U., Britton, J. W., Sawyer, B. C., & Amini, J. (2013). Arbitrary waveform generator for quantum information processing with trapped ions. Review of Scientific Instruments, 84(3), 033108. https://doi.org/10.1063/1-4795552
  • [9] Vankka, J. (1997). Methods of mapping from phase to sine amplitude in direct digital synthesis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(2), 526-534. https://doi.org/10.1109/58.585137
  • [10] D’Amato, G., Avitabile, G., Coviello, G., & Talarico, C. (2019). DDS-PLL Phase Shifter Architectures for Phased Arrays: Theory and Techniques. IEEE Access, 7, 19461-19470. https://doi.org/10.1109/ACCESS.2019.2895388
  • [11] Kim, Y. S., Lee, J., Hong, Y., Kim, J. E., & Baek, K.-H. (2013). Low-power pipelined phase accumulator with sequential clock gating for DDFSs. Electronics Letters, 49(23), 1445-1446. https://doi.org/10.1049/el.2013.2588
  • [12] Rutherford, B. C., & Lewis, C. S. (2018, April). Practical direct digital synthesis tor realizing high frequency signals from low frequency domains. In 2018 IEEE Radar Conference (RadarConf18) (pp. 0670-0675). IEEE. https://doi.org/10.1109/RADAR.2018.8378639
  • [13] Fu, Z., & Liu, H. (2018). Ultra narrow pulse generator with precision adjustable pulse width. Review of Scientific Instruments, 89(5), 055103. https://doi.org/10.1063/1.5023539
  • [14] Koutroulis, E., Dollas, A., & Kalaitzakis, K. (2006). High-frequency pulse width modulation implementation using EPGA and CPLD ICs. Journal of Systems Architecture, 52(6), 332-344. https://doi.org/10.1016/j.sysarc.2005.09.001
  • [15] Sharma, A., Sun, Y., & Simpson, O. (2021). Design and Implementation of a Re-Configurable Versatile Direct Digital Synthesis-Based Pulse Generator. IEEE Transactions on Instrumentation and Measurement, 70, 1-14. https://doi.org/10.1109/TIM.2021.3094240
  • [16] Qin, X., Zhang, W., Wang, L., Zhao, Y., Tong, Y., Rong, X., & Du, J. (2020). An EPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems. IEEE Transactions on Instrumentation and Measurement, 69(4), 1127-1139. https://doi.org/10.1109/TIM.2019.2910921
  • [17] De Martino, M., De Caro, D., Esposito, D., Napoli, E., Petra, N., & Strollo, A. G. M. (2018). A Standard-Cell-Based All-Digital PWM Modulator with High Resolution and Spread-Spectrum Capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(11), 3885-3896. https://doi.org/10.1109/TCSI.2018.2852682
  • [18] Morales, J. I., Chierchie, F., Mandolesi, P. S., & Paolini, E. E. (2020). A high-resolution all-digital pulse-width modulator architecture with a tunable delay element in CMOS. International Journal of Circuit Theory and Applications, 48(8), 1329-1345. https://doi.org/10.1002/cta.2803
  • [19] Sotiriadis, P. P. (2010). Theory of Flying-Adder Frequency Synthesisers - Part I: Modeling, Signals’ Periods and Output Average Frequency. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1935-1948. https://doi.org/10.1109/TCSI.2009.2039834
  • [20] Chada, A., Mutnury, B., Dikhaminjia, N., Tsiklauri, M., Fan, J., & Drewniak, J. L. (2018). Improved Transmitter Jitter Modeling for Accurate Bit Error Rate (BER) Eye Contours Using Transient Simulation of Short Bit Patterns. IEEE Transactions on Electromagnetic Compatibility, 60(5), 1520-1528. https://doi.org/10.1109/TEMC.2017.2776080
  • [21] Ren, N., Fu, Z., Lei, S., Liu, H., & Tian, S. (2020). Jitter generation model based on timing modulation and cross point calibration for jitter decomposition. Metrology and Measurement Systems, 28(1), 123-143. https://doi.org/10.24425/MMS.2021.135993
  • [22] Kwiatkowski. P., Różyc, K., Sawicki, M., Jachna, Z., & Szplet, K. (2017). 5 Ps Jitter Programmable Time Interval/Frequency Generator. Metrology and Measurement Systems, 24(1). 57-68. https://doi.org/10.1515/mms-2017-0009
  • [23] Hogenauer, F. (1981). An economical class of digital filters for decimation and interpolation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(2), 155-162. https://doi.org/10.1109/TASSP. 1981.1163535
  • [24] Millman, (2011). Pulse, Digital and Switching Waveforms. McGraw-Hill Education (India) Pvt Limited.
  • [25] Parker, M. (2017). Digital Signal Processing 101: Everything You Need to Know to Get Started. Newnes.
  • [26] Texas Instruments. (2021). DAC39J82 Datasheet [Application note], https://www.ti.com/lit/gpn/dac39j82
  • [27] Advantech. (2021). MIO-3260 Datasheet and Product Info [Application note). https://advdownload.advantech.com/productfile/PIS/MIO-3260/Product%20-%20Datasheet/MIO-3260_DS(06.09.15)20150615171354.pdf
  • [28] Analog Devices. (2021). ADF4351 Datasheet and Product Info [Application note]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf
  • [29] Texas Instruments. (2021). LMK04828 Datasheet, Product Information and Support (Application note]. https://www.ti.com/Iit/gpn/lmk04828
  • [30] Texas Instruments. (2021). THS3202 Datasheet, Product Information and Support [Application note]. https://www.ti.com/lit/gpn/ths3202
  • [31] Omran, H., Sharaf, K., & Ibrahim, M. (2009, November). An all-digital direct digital synthesizer fully implemented on FPGA. In 2009 4th International Design and Test Workshop (IDT) (pp. 1-6). IEEE. https://doi.org/10.1109/IDT.2009.5404133
  • [32] Liu, J.-C., Huang, C.-J., & Lee, P.-Y. (2018). A High-Accuracy Programmable Pulse Generator With a 10-ps Timing Resolution. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(4), 621-629. https://doi.org/10.1109/TVLSI.2017.2781421
  • [33] Keysight (Ed.) (2022, January 20). EDU33211A Waveform Generator, 20MHz, 1 Channel https://www.keysight.com/us/en/product/EDU33211A/waveform-generator-20mhz-1-channel.html
  • [34] B&K Precision (Ed.) (2022, January 20). Model 4033, 50 MHz Pulse Generators - B&K Precision. https://www.bkprecision.com/products/signal-generators/4033-50-mhz-pulse-generator.html
Uwagi
1. This study was supported in part by the National Natural Science Foundation of China under Grant 61871089, in part by the Guangxi Key Laboratory of Automatic Detection Technology and Instrument Foundation under Grant YQ201202, and in part by the Sichuan Science and Technology Department under Grant 2020JDRC0005.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c37a84e3-7bce-4752-9e59-992ebdf74d35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.