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TEETH GEOMETRY AND CONTACT PRESSURE CALCULATION OF 

EXTERNAL CYCLOIDAL GEARS 
 

Summary. Cycloidal (also called epicyclical or convex-concave) gears are used 

less often than common involute gears, which are very easy to manufacture and 

can be modified by corrections to the gear profile. Cycloidal gears are very 

sensitive to the proper axial distance between the pinion and the gear. The main 

advantage of convex-concave gears is the lowering of the contact pressure due to 

teeth flanks meshing and also the lowering of the slide ratios compared to 

involute gears. The calculation of the selected geometrical parameters and the 

contact pressure between the teeth flanks of the cycloidal gearing is described in 

the presented article. 
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1. INTRODUCTION 

 

The mathematical model of convex-concave gearing is the basis of the geometry model 

calculation and as described in detail in [1]. The determination of the geometric parameters in 

the gear’s teeth flanks is based on the equations evaluated from the shape of the path of 

contact. The general path of contact starting at point A and ending at point E for this type of 

gearing is presented in Figure 1. 

 

 
 

Fig. 1. Path of contact of convex-concave gearing 

 

The arcs of the path of contact are circular arcs defined by their radii rkh for the upper one 

and rkd for the lower one. The centres of the arcs Skh and Skd, which lie on the common link 

passing through the contact inflection point C, are defined by the coordinates xSkh, ySkh and 

xSkd, ySkd in the coordinate system with the origin located in contact point C. 

Points A and E are limiting points of the teeth gear mesh. Their position can also be 

projected onto the teeth flanks’ cycloidal curves in both meshing gears, which limits the 

working area of the teeth flanks [2, 3]. 

 

 

2. GEOMETRY OF THE TEETH FLANKS 
 

The cycloidal teeth can generally be understood as any teeth whose tooth flank forms a 

curve with a convex and a concave part. Such teeth are present when the contact path is a so-

called S-curve, as defined above [4]. Deriving the form of the correctly mating profiles of a 

cycloidal gearing can be done using basic knowledge of differential geometry and the direct 

application of the fundamental law of gearing [5]. The main goal of this method is to 

determine the relation between the pressure angle at various points of the path of contact α 

and the angle of the gear rotation between pressure angles of two arbitrary points φr (α) 

(Figure 2). 
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Fig. 2. Relation between the angles α and φr: 

1) path of contact; 2) tooth flank profile; 3) tooth flank profile evolute 

 

 

The relation is defined by Equation 1: 

 

 kh, d C
rh, d h, d C C C

1 h, d  

2 cos
cos sin ln

cos

r

r


    



 
    

   , (1) 

where: 

α  - the pressure angle at various points of the path of contact 

φr (α) - the angle of the gear rotation between pressure angles of two arbitrary points 

and the signs are defined as positive for the upper part and negative for the 

lower part of the path of contact. 

 

The parametric equations of the gear tooth flank profiles, obtained by the coordinates’ 

transformation of the path of contact’s compound of two circular arcs, are defined by the 

Equation 1. 

 
     kh, d h, d C h, d rh, d h, d 1 rh, d h, d2 sin cos sinx r r            , (2) 

 
     kh, d h, d C h, d rh, d h, d 1 rh, d h, d2 sin sin siny r r             . (3) 

 

The x and y coordinates are defined for the coordination system with the origin aligned to 

the point of rotation of the pinion O1 and the gear O2. The upper signs in the equations stand 

for the upper part of the path of contact (indexed with h) and the lower signs in the equations 

stand for the lower part of the path of contact (indexed with d). 

The division of the contact path into an upper and a lower part requires the division of all 

geometric and other cycloidal gear pair parameters into analogous parts, which will be 

defined according to the corresponding parts of the contact path curve [6]. 

It is suitable to derive Equations 2 and 3 into a form that defines the addendum (indexed 

with a) and the dedendum (indexed with f) of the gear teeth separately. 
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2.1. Pinion 

 

The coordinates of the pinion 1 addendum flank curve are based on the upper part of the 

contact path arc dimension, according to the following equations: 

 
   1a kh h C h rh 1 rh

2 sin cos sinx r r        
, (4) 

 
   1a kh h C h rh 1 rh

2 sin sin cosy r r        
. (5) 

 

The coordinates of the pinion 1 dedendum flank curve is based on the lower part of the 

contact path arc dimension, according to the following equations: 

 
   1f kd d C d rd 1 rd

2 sin cos sinx r r        
, (6) 

 
   1f kd d C d rd 1 rd

2 sin sin cosy r r        
. (7) 

 

2.2. External gear 

 

The tooth flank profile coordinates of the external gear 2 can be derived from the equations 

defined for the pinion 1 considering the gear ratio between them, which is defined as: 

 

1 2 2
12

2 1 1

z r
i

z r




    

. (8) 

 

The coordinates of the external gear addendum flank curve are based on the lower part of 

the contact path arc dimension, according to the following equations: 

 
       2a kd d C d 12 rd 12 1 12 rd2 sin cos sinx r i i r i           , (9) 

 
         2a kd d C d 12 rd 12 1 1 212 rd

2 sin sin cosy r i i r r ri             . (10) 

 

The coordinates of the external gear dedendum flank curve is based on the upper part of 

the contact path arc dimension, according to the following equations: 

 
       2f kh h C h 12 rh 12 1 12 rh

2 sin cos sinx r i i r i           , (11) 

 
         2f kh h C h 12 1 1 212 12rh rh

2 sin sin cosy r i r r ri i             . (12) 

 

 

3. SINGLE MESH POINTS 
 

The coordinates of the single mesh points B and D are obtained by solving Equation 1, 

while considering the angle turns φrAD and φrEB to be equal to the angle defined by the pinion 

tooth pitch [1]. 
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The pressure angles αB and αD in the single mesh points B and D are calculated using the 

following transcendental equations: 
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The single mesh points are important for the definition of the normal force value, which is 

divided between two pairs of meshing teeth at the path of contact curves AB and CD 

(Figure 1). 

 

 

4. CONTACT PRESSURES 
  

The contact pressure calculation is based on Hertz contact theory [3,7], which is also 

defined for the upper as well as the lower parts of the path of contact by the following 

equations: 

 

1h
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. (18) 

 

The normal forces at the contact points A to C (F1h) and at C to E (F1d) are calculated at the 

pinion 1, loaded by the input torque Mk1, as follows: 
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 (20) 

The reduced Young’s modulus of the pinion and gear material is a part of the material 

coefficient ZE, which is calculated by Equation 8 [9]. 
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where: 

μ1, 2 - Poisson’s ratios of the contact pair materials, 

E1, 2 - Young’s moduli of the contact pair materials. 
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The reduced radius of curvature ρred is calculated according to these equations: 
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The radii of curvature of the pinion 1 addendum (a) and dedendum (f) are defined as: 
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The radii of curvature of the gear 2 addendum and dedendum are defined as: 
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5. CALCULATION OF SELECTED GEAR PAIR VALUES 
 

The selected gear pair with the module m = 4 mm and the teeth number z1 = 16 and z2 = 24 

will represent the application of all derived equations into a model of cycloidal gear pair 

geometry and the distribution of contact pressure by meshing of the gear teeth. 

The geometry is influenced by the module m, the number of teeth z, the radii of the contact 

path arcs rkh and rkd, and the pressure angle at the point C αC. The convex-concave condition 

is satisfied, if there is a valid inequation [1]. 

 

min n
kh, d Ccos

4

z m
r 

. (28) 

 

The radii of the contact path arcs in the symmetric arrangement within the selected gear 

pair were defined as rkh = rkd = 8 mm and the pressure angle in the point C as αC = 20°, which 

satisfies the inequation (28). The geometry of the selected gear pair is presented in Figure 3. 

The contact pressure between the pinion and the gear at the tooth flanks is calculated by 

the unit values of the torque Mk1, the speed w1 and the gear tooth flank width l, all of which 

are defined as being equal to 1. The gears are considered from steel with Poisson’s ratios μ1 = 

μ2 = 0.3 and Young’s moduli E1 = E2 = 210000 MPa. The Hertz pressure distribution, as 

projected onto the pinion and gear teeth flanks, is presented in (Figure 4). 

The contact Hertz pressure pH between the pinion and the gear, up to the angle of the 

pinion rotation between the pressure angles of two arbitrary points φr1 (α), is shown in 

Figure 5. 
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Fig. 3. Geometrical model of the gear pair with cycloidal teeth flanks 

 

 
 

Fig. 4. Hertz pressure distribution projected onto the gear (left) and pinion (right) teeth flanks 

 

 
 

Fig. 5. Hertz’s pressure pH up to angle φr1 
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6. CONCLUSION 

 

The article presents a possible approach for modelling cycloidal gear teeth flanks based on 

the path of contact curves. The calculation of the maximum contact pressure at various points 

of the gear pair teeth flanks is also defined. The calculation of a selected gear pair is 

performed by the unit values of the torque, speed and tooth flank width. The obtained model 

is fully parametric and allows us to calculate the Hertz pressures for various combinations of 

the characteristic gear pair values, such as the module, the teeth numbers, the pressure angle 

in the contact point C and the radii of the path of contact curve. The change in the 

characteristic gear pair values enables us to pursue further research on their influence on 

Hertz pressure values [9,10,12]. 
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