Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The knowledge about membrane contactors is growing rapidly but is still insufficient for a reliable designing. This paper presents a new type of membrane contactors that are integrated with one of the following ways of separation by using absorbents, micelles, flocculants, functionalized polymers, molecular imprints, or other methods that are based on aggregation. The article discusses methods for designing multi-stage cascade, usually counter-current. At every stage of this cascade, relevant aggregates are retained by the membrane, while the permeate passes freely through membrane. The process takes place in the membrane boundary layer with a local cross-flow of the permeate and the retentate. So the whole system can be called a cross-counter-current. The process kinetics “k” must be coordinated with the permeate flux “J” and the rate of surface renewal of the sorbent on the membrane surface, s. This can be done by using ordinary back-flushing or relevant hydrodynamic method of sweeping, such as: turbulences, shear stresses or lifting forces. A surface renewal model has been applied to adjust the optimal process conditions to sorbent kinetics. The experimental results confirmed the correctness of the model and its suitability for design of the new type of contactors.
Czasopismo
Rocznik
Tom
Strony
573--583
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Wroclaw University of Technology, Faculty of Chemistry, Norwida 4/6, 50-373, Wroclaw, Poland
autor
- Wroclaw University of Technology, Faculty of Chemistry, Norwida 4/6, 50-373, Wroclaw, Poland
Bibliografia
- 1. Ding H.B., Carr P.W., Cussler E.L., 1992. Racemic leucine separation by hollow-fiber extraction. AIChE J., 38, 1493-1498. DOI: DOI: 10.1002/aic.690381002.
- 2. Drioli E., Giorno L., 2005. Membrane Contactors: Fundamentals, 1st edition, ELSEVIER. Commercial Brochure of Liqui Cel®, Membrana, 2012. North Carolina, USA.
- 3. Einstein H.A., Li H., 1956. The viscous sublayer along a smooth boundary. J. Eng. Mech. Div. ASCE, 82, EM2. Koltuniewicz A.B., 1992. Predicting permeate flux in ultrafiltration on the basis of surface renewal concept. J. Membrane Sci., 68, 107-118. DOI: 10.1016/0376-7388(92)80153-B.
- 4. Koltuniewicz A.B., Field R.W., 1996. Process factors during removal of oil-in-water emulsions with cross-flow microfiltration. Desalination, 105, 79- 89. DOI: 10.1016/0011-9164(96)00063-X.
- 5. Koltuniewicz A.B., Bezak K., 2002. Engineering of membrane biosorption. Desalination, 144, 219-226. DOI: 10.1016/S0011-9164(02)00315-6.
- 6. Koltuniewicz A.B., Witek A., Bezak K., 2004. Efficiency of membrane-sorption integrated processes. J. Membrane Sci., 239, 129–141. DOI: 10.1016/j.memsci.2004.02.037.
- 7. Koltuniewicz A.B., Drioli E., 2008. Membranes in clean technologies, theory and practice. Wiley-VCH.
- 8. Koltuniewicz A.B., 2010. Integrated membrane operations in various industrial sectors, In: Drioli E., Giorno L. (Eds.), Comprehensive membrane science and engineering. ELSEVIER, chapter 4.05.1.
- 9. Koltuniewicz A.B., 2011. Process engineering for sustainability, In: Encyclopedia of Life Support Systems. UNESCO EOLSS, chapter 6.34.7.1.
- 10. Modelski Sz., Kołtuniewicz A.B., Witek-Krowiak A., 2011. Kinetics of VOC absorption using capillary membrane contactor. Chem. Eng. J., 168, 1016–1023. DOI: 10.1016/j.cej.2011.01.075.
- 11. Kumar P.S., Hogendorn J.A., Feron P.H.M., Versteeg G.F., 2002. New absorption liquids for the removal of CO2 from diluted gas streams using membrane contactors. Chem. Eng. Sci., 57, 1639-1651. DOI: 10.1016/S00092509(02)00041-6.
- 12. Pagnanelli A.F., Beolchini F., Di Biase A., Veglio V., 2003. Effect of equilibrium models in the simulation of heavy metals biosorption in single and two-stage UF/MF membrane reactor systems. Biochem. Eng. J., 15, 27– 35. DOI: 10.1016/S1369-703X(02)00179-1.
- 13. Reed B.W., Siemens M.J., Cussler E.L., 1995. Membrane contactors, In: Noble R.D., Sern S.A. (Eds.), Membrane Separations Technology, Principles and Applications. ELSEVIER SCIENCE, Amsterdam, the Netherlands, Chapter 10.
- 14. Stankiewicz A., Moulin J.A., 2004. Re-engineering the chemical processing plant. Process intensification. Marcel Dekker, Inc., New York.
- 15. Witek A., Koltuniewicz A.B., Kurczewski B., Radziejowska M., Hatalski M., 2006. Simultaneous removal of phenols and Cr3+ using micellar-enhanced ultrafiltration process. Desalination, 191, 111–116. DOI: 10.1016/j.desal.2005.05.024.
- 16. Witek A., Szafran R.G., Koltuniewicz A.B., 2006. p-Cresol removal using a membrane contactor enhanced by the micellar solubilization, Desalination, 200, 575–577. DOI: 10.1016/j.desal.2006.03.453.
- 17. Witek-Krowiak A., Szafran R.G., Koltuniewicz A., 2009. Application of a membrane contactor for a simultaneous removal of p-cresol and Cr(III) ions from water solution, Desalination, 241, 91-96. DOI: 10.1016/j.desal.2007.11.083.
- 18. Yilmaza I., Kabay N., Bryjak M., Yüksela M., Wolska J., Koltuniewicz A.B., 2006. Submerged membrane–ionexchange hybrid process for boron removal. Desalination, 198, 310–315. DOI:10.1016/j.desal.2006.01.031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3778e1a-bd89-42fb-9bc1-858fa509cc12